[Wien] problem with DOS

Peter Blaha pblaha at zeus.theochem.tuwien.ac.at
Wed Mar 24 15:39:58 CET 2004


> Here are the files that you mentioned about:

You really do hard work without any symmetry. For a metal this means that
you should use very many k-points (1000 ?).

However, I modified your struct file, removing all numbering like Fe1, Fe2,...,
Without that you do NOT force all atoms to be inequivalent.
than applied the regular init_lapw.
This changes the multiplicity and still finds a high symmetry spacegroup.
Calculations should be orders of magnitude faster that way, in particular since
symmetry reduces your irreducible k-points.

Use the struct file included.

In essence you have done your calculation with ONE (or very few) true
k-points (they all had probably identical eigenvalues)!

Anyway, there might  also be "some" physics, since you said, this happens only
when Cr is at one site, but not at the other. This tells you that there is
very little/ much more interactions with the neigbors, (i.e. with Fe or with
Al).
It is also known that a "real" impurity has quite sharp resonances, so a
spiky Cr-DOS is expected (not the total one!).

In addition, in particular for metals!!! larger supercells might be necessary
(depending on the quantity of interest).

Regards

                                      P.Blaha
--------------------------------------------------------------------------
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-15671             FAX: +43-1-58801-15698
Email: blaha at theochem.tuwien.ac.at    WWW: http://info.tuwien.ac.at/theochem/
--------------------------------------------------------------------------
-------------- next part --------------
FeAlcr                                                                         
P   LATTICE,NONEQUIV.ATOMS:  5 221 Pm-3m
             RELA
 10.922621 10.922621 10.922621 90.000000 90.000000 90.000000
ATOM   1: X=0.75000000 Y=0.75000000 Z=0.75000000
          MULT= 8          ISPLIT= 8
       1: X=0.25000000 Y=0.25000000 Z=0.75000000
       1: X=0.25000000 Y=0.75000000 Z=0.25000000
       1: X=0.75000000 Y=0.25000000 Z=0.25000000
       1: X=0.75000000 Y=0.75000000 Z=0.25000000
       1: X=0.25000000 Y=0.25000000 Z=0.25000000
       1: X=0.75000000 Y=0.25000000 Z=0.75000000
       1: X=0.25000000 Y=0.75000000 Z=0.75000000
Fe1        NPT=  781  R0=0.00010000 RMT=    2.2000   Z: 26.0
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
                     0.0000000 1.0000000 0.0000000
                     0.0000000 0.0000000 1.0000000
ATOM   2: X=0.50000000 Y=0.00000000 Z=0.00000000
          MULT= 3          ISPLIT= 8
       2: X=0.00000000 Y=0.50000000 Z=0.00000000
       2: X=0.00000000 Y=0.00000000 Z=0.50000000
Al1        NPT=  781  R0=0.00010000 RMT=    2.2000   Z: 13.0
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
                     0.0000000 1.0000000 0.0000000
                     0.0000000 0.0000000 1.0000000
ATOM   3: X=0.00000000 Y=0.00000000 Z=0.00000000
          MULT= 1          ISPLIT= 8
Al2        NPT=  781  R0=0.00010000 RMT=    2.2000   Z: 13.0
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
                     0.0000000 1.0000000 0.0000000
                     0.0000000 0.0000000 1.0000000
ATOM   4: X=0.50000000 Y=0.00000000 Z=0.50000000
          MULT= 3          ISPLIT= 8
       4: X=0.50000000 Y=0.50000000 Z=0.00000000
       4: X=0.00000000 Y=0.50000000 Z=0.50000000
Al3        NPT=  781  R0=0.00010000 RMT=    2.2000   Z: 13.0
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
                     0.0000000 1.0000000 0.0000000
                     0.0000000 0.0000000 1.0000000
ATOM   5: X=0.50000000 Y=0.50000000 Z=0.50000000
          MULT= 1          ISPLIT= 8
Cr1        NPT=  781  R0=0.00010000 RMT=    2.2000   Z: 24.0
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
                     0.0000000 1.0000000 0.0000000
                     0.0000000 0.0000000 1.0000000
  48      NUMBER OF SYMMETRY OPERATIONS
 1 0 0 0.0000000
 0 1 0 0.0000000
 0 0 1 0.0000000
       1
-1 0 0 0.0000000
 0-1 0 0.0000000
 0 0 1 0.0000000
       2
-1 0 0 0.0000000
 0 1 0 0.0000000
 0 0-1 0.0000000
       3
 1 0 0 0.0000000
 0-1 0 0.0000000
 0 0-1 0.0000000
       4
 0 0 1 0.0000000
 1 0 0 0.0000000
 0 1 0 0.0000000
       5
 0 0 1 0.0000000
-1 0 0 0.0000000
 0-1 0 0.0000000
       6
 0 0-1 0.0000000
-1 0 0 0.0000000
 0 1 0 0.0000000
       7
 0 0-1 0.0000000
 1 0 0 0.0000000
 0-1 0 0.0000000
       8
 0 1 0 0.0000000
 0 0 1 0.0000000
 1 0 0 0.0000000
       9
 0-1 0 0.0000000
 0 0 1 0.0000000
-1 0 0 0.0000000
      10
 0 1 0 0.0000000
 0 0-1 0.0000000
-1 0 0 0.0000000
      11
 0-1 0 0.0000000
 0 0-1 0.0000000
 1 0 0 0.0000000
      12
 0 1 0 0.0000000
 1 0 0 0.0000000
 0 0-1 0.0000000
      13
 0-1 0 0.0000000
-1 0 0 0.0000000
 0 0-1 0.0000000
      14
 0 1 0 0.0000000
-1 0 0 0.0000000
 0 0 1 0.0000000
      15
 0-1 0 0.0000000
 1 0 0 0.0000000
 0 0 1 0.0000000
      16
 1 0 0 0.0000000
 0 0 1 0.0000000
 0-1 0 0.0000000
      17
-1 0 0 0.0000000
 0 0 1 0.0000000
 0 1 0 0.0000000
      18
-1 0 0 0.0000000
 0 0-1 0.0000000
 0-1 0 0.0000000
      19
 1 0 0 0.0000000
 0 0-1 0.0000000
 0 1 0 0.0000000
      20
 0 0 1 0.0000000
 0 1 0 0.0000000
-1 0 0 0.0000000
      21
 0 0 1 0.0000000
 0-1 0 0.0000000
 1 0 0 0.0000000
      22
 0 0-1 0.0000000
 0 1 0 0.0000000
 1 0 0 0.0000000
      23
 0 0-1 0.0000000
 0-1 0 0.0000000
-1 0 0 0.0000000
      24
-1 0 0 0.0000000
 0-1 0 0.0000000
 0 0-1 0.0000000
      25
 1 0 0 0.0000000
 0 1 0 0.0000000
 0 0-1 0.0000000
      26
 1 0 0 0.0000000
 0-1 0 0.0000000
 0 0 1 0.0000000
      27
-1 0 0 0.0000000
 0 1 0 0.0000000
 0 0 1 0.0000000
      28
 0 0-1 0.0000000
-1 0 0 0.0000000
 0-1 0 0.0000000
      29
 0 0-1 0.0000000
 1 0 0 0.0000000
 0 1 0 0.0000000
      30
 0 0 1 0.0000000
 1 0 0 0.0000000
 0-1 0 0.0000000
      31
 0 0 1 0.0000000
-1 0 0 0.0000000
 0 1 0 0.0000000
      32
 0-1 0 0.0000000
 0 0-1 0.0000000
-1 0 0 0.0000000
      33
 0 1 0 0.0000000
 0 0-1 0.0000000
 1 0 0 0.0000000
      34
 0-1 0 0.0000000
 0 0 1 0.0000000
 1 0 0 0.0000000
      35
 0 1 0 0.0000000
 0 0 1 0.0000000
-1 0 0 0.0000000
      36
 0-1 0 0.0000000
-1 0 0 0.0000000
 0 0 1 0.0000000
      37
 0 1 0 0.0000000
 1 0 0 0.0000000
 0 0 1 0.0000000
      38
 0-1 0 0.0000000
 1 0 0 0.0000000
 0 0-1 0.0000000
      39
 0 1 0 0.0000000
-1 0 0 0.0000000
 0 0-1 0.0000000
      40
-1 0 0 0.0000000
 0 0-1 0.0000000
 0 1 0 0.0000000
      41
 1 0 0 0.0000000
 0 0-1 0.0000000
 0-1 0 0.0000000
      42
 1 0 0 0.0000000
 0 0 1 0.0000000
 0 1 0 0.0000000
      43
-1 0 0 0.0000000
 0 0 1 0.0000000
 0-1 0 0.0000000
      44
 0 0-1 0.0000000
 0-1 0 0.0000000
 1 0 0 0.0000000
      45
 0 0-1 0.0000000
 0 1 0 0.0000000
-1 0 0 0.0000000
      46
 0 0 1 0.0000000
 0-1 0 0.0000000
-1 0 0 0.0000000
      47
 0 0 1 0.0000000
 0 1 0 0.0000000
 1 0 0 0.0000000
      48


More information about the Wien mailing list