[Wien] linearization energies
Nandan Tandon
nandan at physics.unipune.ernet.in
Mon May 9 17:55:46 CEST 2005
Dear Stefaan,
Thanks for your reply. The linearization energies were set acccording to
the steps described in the notes writen by you using the DOS for the
system. But if i use the -in1new option during run_lapw i get different
linearization energies. The difference is that there are additional LOs
and the "E_trial" is also different. The total energy is lower by 0.00013
in the case where in1new option was used.
My question is, which is more reliable result or does it depend on some
other criteria also?
Your(or anybody who would be interested) comments would be valuable. I am
attaching the struct, in1c and
in1c_in1new files.
Nandan.
On Sat, 7 May 2005, Stefaan Cottenier wrote:
>
> They are the coordinates indicated by x, y and z in the list of special
> positions as given in crystallographic tables. Example: position 12e in
> spacegroup Im-3m (
> http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-wp-list?gnum=229 ). In
> contrast to position 12d where all 6 atoms are completely determined, there
> is one degree of freedom in 12e given by 'x'. The presence of such a free
> parameter corresponds with a force in wien2k.
>
>
> In order to do relaxations around impurities, it is better to work with the
> calculated lattice constants of the pure compound. But that's not the origin
> of your problem. Are your k-mesh and basis set large enough (= did you check
> the stability of forces which respect to them)? Is the choice of
> linearization energies OK? etc...
>
> Stefaan
> _______________________________________________
> Wien mailing list
> Wien at zeus.theochem.tuwien.ac.at
> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
>
--
******************************************************************************
Nandan Tandon
Research Student
Department of Physics,
University of Pune
Pune-411007 Tel.(O)+91-20-25692678 ext 426
MAHARASHTRA, INDIA. Fax.(O)+91-20-25691684
******************************************************************************
-------------- next part --------------
WFFIL (WFPRI, SUPWF)
7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT
.16094 6 0 global e-param with N other choices, napw
0 0.074 0.000 CONT 1
0 -0.570 0.000 CONT 1
1 0.252 0.000 CONT 1
1 -0.527 0.000 CONT 1
2 0.252 0.000 CONT 1
2 -0.518 0.000 CONT 1
.16094 4 0 global e-param with N other choices, napw
0 0.143 0.000 CONT 1
0 -0.569 0.000 CONT 1
1 0.257 0.000 CONT 1
1 -0.508 0.000 CONT 1
K-VECTORS FROM UNIT:4 -8.0 1.5 emin/emax window
-------------- next part --------------
WFFIL (WFPRI, SUPWF)
7.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT
0.30 4 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)
2 -1.09 0.010 CONT 1
2 0.30 0.000 CONT 1
0 0.30 0.000 CONT 1
1 0.30 0.000 CONT 1
0.30 3 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)
0 -0.05 0.010 CONT 1
0 0.30 0.000 CONT 1
1 0.30 0.000 CONT 1
K-VECTORS FROM UNIT:4 -8.0 1.5 emin/emax window
-------------- next part --------------
GaN
H LATTICE,NONEQUIV.ATOMS: 2186_P63mc
MODE OF CALC=RELA unit=bohr
6.028355 6.028355 9.812854 90.000000 90.000000120.000000
ATOM -1: X=0.33333333 Y=0.66666667 Z=0.75000000
MULT= 2 ISPLIT= 4
-1: X=0.66666666 Y=0.33333333 Z=0.25000000
Ga1 NPT= 781 R0=0.00005000 RMT= 2.0000 Z: 31.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -2: X=0.33333333 Y=0.66666667 Z=0.12500000
MULT= 2 ISPLIT= 4
-2: X=0.66666666 Y=0.33333333 Z=0.62500000
N 1 NPT= 781 R0=0.00010000 RMT= 1.6000 Z: 7.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
12 NUMBER OF SYMMETRY OPERATIONS
-1 1 0 0.0000000
-1 0 0 0.0000000
0 0 1 0.0000000
1
-1 1 0 0.0000000
0 1 0 0.0000000
0 0 1 0.0000000
2
0-1 0 0.0000000
-1 0 0 0.0000000
0 0 1 0.0000000
3
0-1 0 0.0000000
1-1 0 0.0000000
0 0 1 0.0000000
4
1 0 0 0.0000000
0 1 0 0.0000000
0 0 1 0.0000000
5
1 0 0 0.0000000
1-1 0 0.0000000
0 0 1 0.0000000
6
0 1 0 0.0000000
-1 1 0 0.0000000
0 0 1 0.5000000
7
-1 0 0 0.0000000
-1 1 0 0.0000000
0 0 1 0.5000000
8
0 1 0 0.0000000
1 0 0 0.0000000
0 0 1 0.5000000
9
1-1 0 0.0000000
0-1 0 0.0000000
0 0 1 0.5000000
10
-1 0 0 0.0000000
0-1 0 0.0000000
0 0 1 0.5000000
11
1-1 0 0.0000000
1 0 0 0.0000000
0 0 1 0.5000000
12
More information about the Wien
mailing list