[Wien] Strange k-vectors in case.spaghetti_ene

Thomas Claesson tcl at kth.se
Thu Oct 13 09:34:42 CEST 2005


Dear Wien users and developers!

I know there has been similar questions before on the list, but I haven't
been able to find a satisfactory answer in the list acrhives. I don't
understand the values of the k-vectors in case.spaghetti_ene. Take as an
example the output produced in the TiC example. Here the k-vectors used
are apparently those of the fcc.klist file in the SRC_templates directory.
So for instance the X-point looks like this:

X            40    0    0   40  2.0

(from line no. 81 in fcc.klist)

So the X-point here is at (1,0,0) in units of 2*pi/a. However, if you look
at k-vector no. 81 in the corresponding case.spaghetti_ene, you will find
that it looks like:

   0.76823   0.00000   0.00000   1.97677 -56.51489

What are the units and the coordinate system used here? How is the vector
(0.76823,0,0) calculated from the input (1,0,0)? I know that when the
coordinate system is non-carthesian, the k-vectors are converted to a
carthesian system, but that is not necessary here, right?

Below I have attached parts of Tic.spaghetti_ene (as supplied on the code
download page) and fcc.klist to illustrate my point.

Thanks for your replies!

Best regards,
Thomas Claesson

from TiC.spaghetti_ene

  bandindex:           1
   0.76823   0.38412   0.00000   0.00000 -56.51395
   0.74903   0.38412   0.01921   0.02716 -56.51409
   0.72982   0.38412   0.03841   0.05432 -56.51456
   0.71062   0.38412   0.05762   0.08148 -56.51525
   0.69141   0.38412   0.07682   0.10864 -56.51619
   0.67220   0.38412   0.09603   0.13581 -56.51735
   0.65300   0.38412   0.11524   0.16297 -56.51871
   0.63379   0.38412   0.13444   0.19013 -56.52028
   0.61459   0.38412   0.15365   0.21729 -56.52194
   0.59538   0.38412   0.17285   0.24445 -56.52367
   0.57618   0.38412   0.19206   0.27161 -56.52567
   0.55697   0.38412   0.21126   0.29877 -56.52731
   0.53776   0.38412   0.23047   0.32593 -56.52907
   0.51856   0.38412   0.24968   0.35310 -56.53079
   0.49935   0.38412   0.26888   0.38026 -56.53233
   0.48015   0.38412   0.28809   0.40742 -56.53356
   0.46094   0.38412   0.30729   0.43458 -56.53475
   0.44173   0.38412   0.32650   0.46174 -56.53570
   0.42253   0.38412   0.34571   0.48890 -56.53645
   0.40332   0.38412   0.36491   0.51606 -56.53692
   0.38412   0.38412   0.38412   0.54322 -56.53713
   0.36491   0.36491   0.36491   0.57649 -56.53760
   0.34571   0.34571   0.34571   0.60975 -56.53887
   0.32650   0.32650   0.32650   0.64302 -56.54119
   0.30729   0.30729   0.30729   0.67629 -56.54435
   0.28809   0.28809   0.28809   0.70955 -56.54827
   0.26888   0.26888   0.26888   0.74282 -56.55293
   0.24968   0.24968   0.24968   0.77608 -56.55807
   0.23047   0.23047   0.23047   0.80935 -56.56354
   0.21126   0.21126   0.21126   0.84261 -56.56938
   0.19206   0.19206   0.19206   0.87588 -56.57548
   0.17285   0.17285   0.17285   0.90914 -56.58157
   0.15365   0.15365   0.15365   0.94241 -56.58743
   0.13444   0.13444   0.13444   0.97568 -56.59299
   0.11524   0.11524   0.11524   1.00894 -56.59812
   0.09603   0.09603   0.09603   1.04221 -56.60259
   0.07682   0.07682   0.07682   1.07547 -56.60649
   0.05762   0.05762   0.05762   1.10874 -56.60964
   0.03841   0.03841   0.03841   1.14200 -56.61192
   0.01921   0.01921   0.01921   1.17527 -56.61333
   0.00000   0.00000   0.00000   1.20853 -56.61380
   0.01921   0.00000   0.00000   1.22774 -56.61364
   0.03841   0.00000   0.00000   1.24695 -56.61317
   0.05762   0.00000   0.00000   1.26615 -56.61239
   0.07682   0.00000   0.00000   1.28536 -56.61130
   0.09603   0.00000   0.00000   1.30456 -56.60991
   0.11524   0.00000   0.00000   1.32377 -56.60826
   0.13444   0.00000   0.00000   1.34297 -56.60631
   0.15365   0.00000   0.00000   1.36218 -56.60410
   0.17285   0.00000   0.00000   1.38139 -56.60163
   0.19206   0.00000   0.00000   1.40059 -56.59893
   0.21126   0.00000   0.00000   1.41980 -56.59621
   0.23047   0.00000   0.00000   1.43900 -56.59311
   0.24968   0.00000   0.00000   1.45821 -56.58983
   0.26888   0.00000   0.00000   1.47742 -56.58639
   0.28809   0.00000   0.00000   1.49662 -56.58271
   0.30729   0.00000   0.00000   1.51583 -56.57903
   0.32650   0.00000   0.00000   1.53503 -56.57529
   0.34571   0.00000   0.00000   1.55424 -56.57146
   0.36491   0.00000   0.00000   1.57344 -56.56759
   0.38412   0.00000   0.00000   1.59265 -56.56370
   0.40332   0.00000   0.00000   1.61186 -56.55982
   0.42253   0.00000   0.00000   1.63106 -56.55596
   0.44173   0.00000   0.00000   1.65027 -56.55216
   0.46094   0.00000   0.00000   1.66947 -56.54844
   0.48015   0.00000   0.00000   1.68868 -56.54473
   0.49935   0.00000   0.00000   1.70789 -56.54105
   0.51856   0.00000   0.00000   1.72709 -56.53771
   0.53776   0.00000   0.00000   1.74630 -56.53453
   0.55697   0.00000   0.00000   1.76550 -56.53153
   0.57618   0.00000   0.00000   1.78471 -56.52873
   0.59538   0.00000   0.00000   1.80392 -56.52645
   0.61459   0.00000   0.00000   1.82312 -56.52403
   0.63379   0.00000   0.00000   1.84233 -56.52194
   0.65300   0.00000   0.00000   1.86153 -56.52010
   0.67220   0.00000   0.00000   1.88074 -56.51853
   0.69141   0.00000   0.00000   1.89994 -56.51723
   0.71062   0.00000   0.00000   1.91915 -56.51621
   0.72982   0.00000   0.00000   1.93836 -56.51547
   0.74903   0.00000   0.00000   1.95756 -56.51503
   0.76823   0.00000   0.00000   1.97677 -56.51489

from fcc.klist

W            40   20    0   40  2.0-0.5 1.5       Template for fcc structure
             39   20    1   40  2.0
             38   20    2   40  2.0
             37   20    3   40  2.0
             36   20    4   40  2.0
             35   20    5   40  2.0
             34   20    6   40  2.0
             33   20    7   40  2.0
             32   20    8   40  2.0
             31   20    9   40  2.0
             30   20   10   40  2.0
             29   20   11   40  2.0
             28   20   12   40  2.0
             27   20   13   40  2.0
             26   20   14   40  2.0
             25   20   15   40  2.0
             24   20   16   40  2.0
             23   20   17   40  2.0
             22   20   18   40  2.0
             21   20   19   40  2.0
L            20   20   20   40  2.0
             19   19   19   40  2.0
             18   18   18   40  2.0
             17   17   17   40  2.0
             16   16   16   40  2.0
             15   15   15   40  2.0
             14   14   14   40  2.0
             13   13   13   40  2.0
             12   12   12   40  2.0
             11   11   11   40  2.0
LAMBDA       10   10   10   40  2.0
              9    9    9   40  2.0
              8    8    8   40  2.0
              7    7    7   40  2.0
              6    6    6   40  2.0
              5    5    5   40  2.0
              4    4    4   40  2.0
              3    3    3   40  2.0
              2    2    2   40  2.0
              1    1    1   40  2.0
GAMMA         0    0    0   40  2.0
              1    0    0   40  2.0
              2    0    0   40  2.0
              3    0    0   40  2.0
              4    0    0   40  2.0
              5    0    0   40  2.0
              6    0    0   40  2.0
              7    0    0   40  2.0
              8    0    0   40  2.0
              9    0    0   40  2.0
             10    0    0   40  2.0
             11    0    0   40  2.0
             12    0    0   40  2.0
             13    0    0   40  2.0
             14    0    0   40  2.0
             15    0    0   40  2.0
             16    0    0   40  2.0
             17    0    0   40  2.0
             18    0    0   40  2.0
             19    0    0   40  2.0
DELTA        20    0    0   40  2.0
             21    0    0   40  2.0
             22    0    0   40  2.0
             23    0    0   40  2.0
             24    0    0   40  2.0
             25    0    0   40  2.0
             26    0    0   40  2.0
             27    0    0   40  2.0
             28    0    0   40  2.0
             29    0    0   40  2.0
             30    0    0   40  2.0
             31    0    0   40  2.0
             32    0    0   40  2.0
             33    0    0   40  2.0
             34    0    0   40  2.0
             35    0    0   40  2.0
             36    0    0   40  2.0
             37    0    0   40  2.0
             38    0    0   40  2.0
             39    0    0   40  2.0
X            40    0    0   40  2.0



More information about the Wien mailing list