[Wien] Strange k-vectors in case.spaghetti_ene
Thomas Claesson
tcl at kth.se
Thu Oct 13 09:34:42 CEST 2005
Dear Wien users and developers!
I know there has been similar questions before on the list, but I haven't
been able to find a satisfactory answer in the list acrhives. I don't
understand the values of the k-vectors in case.spaghetti_ene. Take as an
example the output produced in the TiC example. Here the k-vectors used
are apparently those of the fcc.klist file in the SRC_templates directory.
So for instance the X-point looks like this:
X 40 0 0 40 2.0
(from line no. 81 in fcc.klist)
So the X-point here is at (1,0,0) in units of 2*pi/a. However, if you look
at k-vector no. 81 in the corresponding case.spaghetti_ene, you will find
that it looks like:
0.76823 0.00000 0.00000 1.97677 -56.51489
What are the units and the coordinate system used here? How is the vector
(0.76823,0,0) calculated from the input (1,0,0)? I know that when the
coordinate system is non-carthesian, the k-vectors are converted to a
carthesian system, but that is not necessary here, right?
Below I have attached parts of Tic.spaghetti_ene (as supplied on the code
download page) and fcc.klist to illustrate my point.
Thanks for your replies!
Best regards,
Thomas Claesson
from TiC.spaghetti_ene
bandindex: 1
0.76823 0.38412 0.00000 0.00000 -56.51395
0.74903 0.38412 0.01921 0.02716 -56.51409
0.72982 0.38412 0.03841 0.05432 -56.51456
0.71062 0.38412 0.05762 0.08148 -56.51525
0.69141 0.38412 0.07682 0.10864 -56.51619
0.67220 0.38412 0.09603 0.13581 -56.51735
0.65300 0.38412 0.11524 0.16297 -56.51871
0.63379 0.38412 0.13444 0.19013 -56.52028
0.61459 0.38412 0.15365 0.21729 -56.52194
0.59538 0.38412 0.17285 0.24445 -56.52367
0.57618 0.38412 0.19206 0.27161 -56.52567
0.55697 0.38412 0.21126 0.29877 -56.52731
0.53776 0.38412 0.23047 0.32593 -56.52907
0.51856 0.38412 0.24968 0.35310 -56.53079
0.49935 0.38412 0.26888 0.38026 -56.53233
0.48015 0.38412 0.28809 0.40742 -56.53356
0.46094 0.38412 0.30729 0.43458 -56.53475
0.44173 0.38412 0.32650 0.46174 -56.53570
0.42253 0.38412 0.34571 0.48890 -56.53645
0.40332 0.38412 0.36491 0.51606 -56.53692
0.38412 0.38412 0.38412 0.54322 -56.53713
0.36491 0.36491 0.36491 0.57649 -56.53760
0.34571 0.34571 0.34571 0.60975 -56.53887
0.32650 0.32650 0.32650 0.64302 -56.54119
0.30729 0.30729 0.30729 0.67629 -56.54435
0.28809 0.28809 0.28809 0.70955 -56.54827
0.26888 0.26888 0.26888 0.74282 -56.55293
0.24968 0.24968 0.24968 0.77608 -56.55807
0.23047 0.23047 0.23047 0.80935 -56.56354
0.21126 0.21126 0.21126 0.84261 -56.56938
0.19206 0.19206 0.19206 0.87588 -56.57548
0.17285 0.17285 0.17285 0.90914 -56.58157
0.15365 0.15365 0.15365 0.94241 -56.58743
0.13444 0.13444 0.13444 0.97568 -56.59299
0.11524 0.11524 0.11524 1.00894 -56.59812
0.09603 0.09603 0.09603 1.04221 -56.60259
0.07682 0.07682 0.07682 1.07547 -56.60649
0.05762 0.05762 0.05762 1.10874 -56.60964
0.03841 0.03841 0.03841 1.14200 -56.61192
0.01921 0.01921 0.01921 1.17527 -56.61333
0.00000 0.00000 0.00000 1.20853 -56.61380
0.01921 0.00000 0.00000 1.22774 -56.61364
0.03841 0.00000 0.00000 1.24695 -56.61317
0.05762 0.00000 0.00000 1.26615 -56.61239
0.07682 0.00000 0.00000 1.28536 -56.61130
0.09603 0.00000 0.00000 1.30456 -56.60991
0.11524 0.00000 0.00000 1.32377 -56.60826
0.13444 0.00000 0.00000 1.34297 -56.60631
0.15365 0.00000 0.00000 1.36218 -56.60410
0.17285 0.00000 0.00000 1.38139 -56.60163
0.19206 0.00000 0.00000 1.40059 -56.59893
0.21126 0.00000 0.00000 1.41980 -56.59621
0.23047 0.00000 0.00000 1.43900 -56.59311
0.24968 0.00000 0.00000 1.45821 -56.58983
0.26888 0.00000 0.00000 1.47742 -56.58639
0.28809 0.00000 0.00000 1.49662 -56.58271
0.30729 0.00000 0.00000 1.51583 -56.57903
0.32650 0.00000 0.00000 1.53503 -56.57529
0.34571 0.00000 0.00000 1.55424 -56.57146
0.36491 0.00000 0.00000 1.57344 -56.56759
0.38412 0.00000 0.00000 1.59265 -56.56370
0.40332 0.00000 0.00000 1.61186 -56.55982
0.42253 0.00000 0.00000 1.63106 -56.55596
0.44173 0.00000 0.00000 1.65027 -56.55216
0.46094 0.00000 0.00000 1.66947 -56.54844
0.48015 0.00000 0.00000 1.68868 -56.54473
0.49935 0.00000 0.00000 1.70789 -56.54105
0.51856 0.00000 0.00000 1.72709 -56.53771
0.53776 0.00000 0.00000 1.74630 -56.53453
0.55697 0.00000 0.00000 1.76550 -56.53153
0.57618 0.00000 0.00000 1.78471 -56.52873
0.59538 0.00000 0.00000 1.80392 -56.52645
0.61459 0.00000 0.00000 1.82312 -56.52403
0.63379 0.00000 0.00000 1.84233 -56.52194
0.65300 0.00000 0.00000 1.86153 -56.52010
0.67220 0.00000 0.00000 1.88074 -56.51853
0.69141 0.00000 0.00000 1.89994 -56.51723
0.71062 0.00000 0.00000 1.91915 -56.51621
0.72982 0.00000 0.00000 1.93836 -56.51547
0.74903 0.00000 0.00000 1.95756 -56.51503
0.76823 0.00000 0.00000 1.97677 -56.51489
from fcc.klist
W 40 20 0 40 2.0-0.5 1.5 Template for fcc structure
39 20 1 40 2.0
38 20 2 40 2.0
37 20 3 40 2.0
36 20 4 40 2.0
35 20 5 40 2.0
34 20 6 40 2.0
33 20 7 40 2.0
32 20 8 40 2.0
31 20 9 40 2.0
30 20 10 40 2.0
29 20 11 40 2.0
28 20 12 40 2.0
27 20 13 40 2.0
26 20 14 40 2.0
25 20 15 40 2.0
24 20 16 40 2.0
23 20 17 40 2.0
22 20 18 40 2.0
21 20 19 40 2.0
L 20 20 20 40 2.0
19 19 19 40 2.0
18 18 18 40 2.0
17 17 17 40 2.0
16 16 16 40 2.0
15 15 15 40 2.0
14 14 14 40 2.0
13 13 13 40 2.0
12 12 12 40 2.0
11 11 11 40 2.0
LAMBDA 10 10 10 40 2.0
9 9 9 40 2.0
8 8 8 40 2.0
7 7 7 40 2.0
6 6 6 40 2.0
5 5 5 40 2.0
4 4 4 40 2.0
3 3 3 40 2.0
2 2 2 40 2.0
1 1 1 40 2.0
GAMMA 0 0 0 40 2.0
1 0 0 40 2.0
2 0 0 40 2.0
3 0 0 40 2.0
4 0 0 40 2.0
5 0 0 40 2.0
6 0 0 40 2.0
7 0 0 40 2.0
8 0 0 40 2.0
9 0 0 40 2.0
10 0 0 40 2.0
11 0 0 40 2.0
12 0 0 40 2.0
13 0 0 40 2.0
14 0 0 40 2.0
15 0 0 40 2.0
16 0 0 40 2.0
17 0 0 40 2.0
18 0 0 40 2.0
19 0 0 40 2.0
DELTA 20 0 0 40 2.0
21 0 0 40 2.0
22 0 0 40 2.0
23 0 0 40 2.0
24 0 0 40 2.0
25 0 0 40 2.0
26 0 0 40 2.0
27 0 0 40 2.0
28 0 0 40 2.0
29 0 0 40 2.0
30 0 0 40 2.0
31 0 0 40 2.0
32 0 0 40 2.0
33 0 0 40 2.0
34 0 0 40 2.0
35 0 0 40 2.0
36 0 0 40 2.0
37 0 0 40 2.0
38 0 0 40 2.0
39 0 0 40 2.0
X 40 0 0 40 2.0
More information about the Wien
mailing list