[Wien] LSMO GGA+U

Osama Yassin oyassin63 at gmail.com
Wed Jun 23 12:00:57 CEST 2010


Hi Plucinski,,

you set nmod to 0 for correlation.St it to 1.
========================
case.inorb
 1 1  0                     nmod, natorb, ipr
PRATT  1.0                    BROYD/PRATT, mixing
 1 1 2                          iatom nlorb, lorb
 0                              nsic 0..AFM, 1..SIC, 2..HFM
 0.15 0.00        U J (Ry)   Note: we recommend to use U_eff = U-J and J=0
========================================================

O A Yassin
----------------

2010/6/22 Lukasz Plucinski <pluto at physics.ucdavis.edu>

> Dear Wien experts, se
>
> I am trying to do my first "+U" calculation on the example of LSMO. I did
> regular GGA calculation few weeks ago with all parameters default, only 8 Ry
> cutoff and 0.05 mixing. The comparison of other published results is very
> good.
>
> Today I tried to do GGA+U. After correcting simple mistakes (e.g. giving U
> in eV instead of Ry) I guess I am more or less ok now, however, I am still
> very far from the result of Fig. 2 from Chikamatsu et al. PRB73 195195
> (2006), actually my band structure still looks almost like regular GGA,
> similar to Kotani J. Phys.: Condens. Matter 21 (2009) 266002.
>
> I use w2web. I am doing regular initialization but with 8 Ry cutoff, and
> 0.05 mixing, then I also initialize for spin-polarized. When starting SCF
> cycle I am aksed for inorb and indm files, then I run SCF with
> "spin-polarized" and "Orbital pot LDU+U" checked. Then I do
> Tasks/Bandstructure and follow there, -orb switches are already there.
>
> At the moment I am trying to switch "+U" of 2eV (0.15 Ry) only for d
> orbitals of Mn -- maybe this is my mistake ?
>
> Here are me input files (case.struct file attached):
>
>
> case.indm
> -9.                      Emin cutoff energy
> 1                       number of atoms for which density matrix is
> calculated
> 1  1  2      index of 1st atom, number of L's, L1
> 0 0           r-index, (l,s)index
>
> I would appreciate some hint, so tomorrow I could continue with some fresh
> ideas :)
>
> Regards,
> Lukasz
>
> LSMO
> P   LATTICE,NONEQUIV.ATOMS:  3221_Pm-3m
> MODE OF CALC=RELA unit=ang
>  7.332140  7.332140  7.332140 90.000000 90.000000 90.000000
> ATOM   1: X=0.00000000 Y=0.00000000 Z=0.00000000
>          MULT= 1          ISPLIT= 2
> Mn1        NPT=  781  R0=0.00010000 RMT=    1.9300   Z: 25.0
> LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>                     0.0000000 1.0000000 0.0000000
>                     0.0000000 0.0000000 1.0000000
> ATOM  -2: X=0.50000000 Y=0.00000000 Z=0.00000000
>          MULT= 3          ISPLIT=-2
>      -2: X=0.00000000 Y=0.50000000 Z=0.00000000
>      -2: X=0.00000000 Y=0.00000000 Z=0.50000000
> O 1        NPT=  781  R0=0.00010000 RMT=    1.7100   Z:  8.0
> LOCAL ROT MATRIX:    0.0000000 0.0000000 1.0000000
>                     0.0000000 1.0000000 0.0000000
>                    -1.0000000 0.0000000 0.0000000
> ATOM   3: X=0.50000000 Y=0.50000000 Z=0.50000000
>          MULT= 1          ISPLIT= 2
> La1        NPT=  781  R0=0.00010000 RMT=    2.5000   Z: 56.7
> LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>                     0.0000000 1.0000000 0.0000000
>                     0.0000000 0.0000000 1.0000000
>  48      NUMBER OF SYMMETRY OPERATIONS
>  1 0 0 0.00000000
>  0 1 0 0.00000000
>  0 0 1 0.00000000
>       1
> -1 0 0 0.00000000
>  0-1 0 0.00000000
>  0 0 1 0.00000000
>       2
> -1 0 0 0.00000000
>  0 1 0 0.00000000
>  0 0-1 0.00000000
>       3
>  1 0 0 0.00000000
>  0-1 0 0.00000000
>  0 0-1 0.00000000
>       4
>  0 0 1 0.00000000
>  1 0 0 0.00000000
>  0 1 0 0.00000000
>       5
>  0 0 1 0.00000000
> -1 0 0 0.00000000
>  0-1 0 0.00000000
>       6
>  0 0-1 0.00000000
> -1 0 0 0.00000000
>  0 1 0 0.00000000
>       7
>  0 0-1 0.00000000
>  1 0 0 0.00000000
>  0-1 0 0.00000000
>       8
>  0 1 0 0.00000000
>  0 0 1 0.00000000
>  1 0 0 0.00000000
>       9
>  0-1 0 0.00000000
>  0 0 1 0.00000000
> -1 0 0 0.00000000
>      10
>  0 1 0 0.00000000
>  0 0-1 0.00000000
> -1 0 0 0.00000000
>      11
>  0-1 0 0.00000000
>  0 0-1 0.00000000
>  1 0 0 0.00000000
>      12
>  0 1 0 0.00000000
>  1 0 0 0.00000000
>  0 0-1 0.00000000
>      13
>  0-1 0 0.00000000
> -1 0 0 0.00000000
>  0 0-1 0.00000000
>      14
>  0 1 0 0.00000000
> -1 0 0 0.00000000
>  0 0 1 0.00000000
>      15
>  0-1 0 0.00000000
>  1 0 0 0.00000000
>  0 0 1 0.00000000
>      16
>  1 0 0 0.00000000
>  0 0 1 0.00000000
>  0-1 0 0.00000000
>      17
> -1 0 0 0.00000000
>  0 0 1 0.00000000
>  0 1 0 0.00000000
>      18
> -1 0 0 0.00000000
>  0 0-1 0.00000000
>  0-1 0 0.00000000
>      19
>  1 0 0 0.00000000
>  0 0-1 0.00000000
>  0 1 0 0.00000000
>      20
>  0 0 1 0.00000000
>  0 1 0 0.00000000
> -1 0 0 0.00000000
>      21
>  0 0 1 0.00000000
>  0-1 0 0.00000000
>  1 0 0 0.00000000
>      22
>  0 0-1 0.00000000
>  0 1 0 0.00000000
>  1 0 0 0.00000000
>      23
>  0 0-1 0.00000000
>  0-1 0 0.00000000
> -1 0 0 0.00000000
>      24
> -1 0 0 0.00000000
>  0-1 0 0.00000000
>  0 0-1 0.00000000
>      25
>  1 0 0 0.00000000
>  0 1 0 0.00000000
>  0 0-1 0.00000000
>      26
>  1 0 0 0.00000000
>  0-1 0 0.00000000
>  0 0 1 0.00000000
>      27
> -1 0 0 0.00000000
>  0 1 0 0.00000000
>  0 0 1 0.00000000
>      28
>  0 0-1 0.00000000
> -1 0 0 0.00000000
>  0-1 0 0.00000000
>      29
>  0 0-1 0.00000000
>  1 0 0 0.00000000
>  0 1 0 0.00000000
>      30
>  0 0 1 0.00000000
>  1 0 0 0.00000000
>  0-1 0 0.00000000
>      31
>  0 0 1 0.00000000
> -1 0 0 0.00000000
>  0 1 0 0.00000000
>      32
>  0-1 0 0.00000000
>  0 0-1 0.00000000
> -1 0 0 0.00000000
>      33
>  0 1 0 0.00000000
>  0 0-1 0.00000000
>  1 0 0 0.00000000
>      34
>  0-1 0 0.00000000
>  0 0 1 0.00000000
>  1 0 0 0.00000000
>      35
>  0 1 0 0.00000000
>  0 0 1 0.00000000
> -1 0 0 0.00000000
>      36
>  0-1 0 0.00000000
> -1 0 0 0.00000000
>  0 0 1 0.00000000
>      37
>  0 1 0 0.00000000
>  1 0 0 0.00000000
>  0 0 1 0.00000000
>      38
>  0-1 0 0.00000000
>  1 0 0 0.00000000
>  0 0-1 0.00000000
>      39
>  0 1 0 0.00000000
> -1 0 0 0.00000000
>  0 0-1 0.00000000
>      40
> -1 0 0 0.00000000
>  0 0-1 0.00000000
>  0 1 0 0.00000000
>      41
>  1 0 0 0.00000000
>  0 0-1 0.00000000
>  0-1 0 0.00000000
>      42
>  1 0 0 0.00000000
>  0 0 1 0.00000000
>  0 1 0 0.00000000
>      43
> -1 0 0 0.00000000
>  0 0 1 0.00000000
>  0-1 0 0.00000000
>      44
>  0 0-1 0.00000000
>  0-1 0 0.00000000
>  1 0 0 0.00000000
>      45
>  0 0-1 0.00000000
>  0 1 0 0.00000000
> -1 0 0 0.00000000
>      46
>  0 0 1 0.00000000
>  0-1 0 0.00000000
> -1 0 0 0.00000000
>      47
>  0 0 1 0.00000000
>  0 1 0 0.00000000
>  1 0 0 0.00000000
>      48
>
> _______________________________________________
> Wien mailing list
> Wien at zeus.theochem.tuwien.ac.at
> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
>
>


-- 
Prof Dr Osama Ali Yassin
Professor of Solid State Physics and ICTP regular associate
Department of Physics, Faculty of Science
Taibah University
Almadeenah Almonawarh
K. of Saudi Arabia
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://zeus.theochem.tuwien.ac.at/pipermail/wien/attachments/20100623/fe5d2681/attachment-0001.htm>


More information about the Wien mailing list