[Wien] Linearization of Low-lying s-state
Peter Blaha
pblaha at theochem.tuwien.ac.at
Mon Mar 7 16:43:41 CET 2011
As mentioned by L.Marks, the choice of RMTs might be non-trivial and I also doubt that
P with 1.06 bohr ?? is a good choice, but smaller O, bigger P might be better.
Somehow ? you got the P-2s states into your in1 file. It is usually that the energies
from lstart are 1-2 Ry lower than what you will have in the scf run.
One would need to see the eigenvalues/charges from the first iteration on.
Did you always have these eigenvalues at -11 (up) and -8 (dn) Ry ?
I would NOT expect such a large spin-splitting for P-2s !!! ???
Have you checked case.inc ? Are the 2s there ?
I can also see:
> MATRIX SIZE 9192 WEIGHT= 2.00 PGR:
> MATRIX SIZE 4988 WEIGHT= 2.00 PGR:
which looks funny !?? because the matrix size differs by a factor of 2.
In any case, with a case.in1
> 0.30 4 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)
> 1 0.30 0.000 CONT 1
> 1 -8.80 0.001 STOP 1
> 0 -0.79 0.002 CONT 1
> 0 -10.5 0.000 CONT 1
I'm not surprised that you get P-2s states.
It could be that your calculation is completely spoiled by now.... ???
Am 07.03.2011 14:44, schrieb David Tompsett:
> Dear All,
>
> I am performing calculations on slabs of the material LiFePO4 using GGA+U in the latest Wien2k release.
>
> To perform min_lapw internal parameter optimisation I reduce the RMT's and use R=1.06 for Phosphorus. This results in a need to reduce the default for energy separation of core
> states to -9.2Ry during lstart. As a result Phosphorus 2p states become part of the valence and need to be treated by a LO. I am having trouble with large QTL-B values regarding
> the L=0 states though.
>
> The energy parameters for phosphorus from case.outputst are:
>
> P RHFS
>
> OCCUPANCY ENERGY(RYD) (R4) (R2) (R) (R-1) (R-3)
>
> 1S 1.000 -1.5314154E+02 5.4020520E-04 1.4448157E-02 1.0359168E-01 1.4648276E+01
> 1S 1.000 -1.5311976E+02 5.3994095E-04 1.4444579E-02 1.0357948E-01 1.4649640E+01
> 2S 1.000 -1.2760822E+01 1.9082408E-01 3.2223815E-01 5.1970457E-01 2.8247951E+00
> 2S 1.000 -1.2738260E+01 1.8994048E-01 3.2198220E-01 5.1963797E-01 2.8236582E+00
> 2P* 1.000 -9.1715513E+00 1.9086915E-01 2.9430623E-01 4.8389989E-01 2.7216785E+00
> 2P* 1.000 -9.1408359E+00 1.8923948E-01 2.9388805E-01 4.8380643E-01 2.7206626E+00
> 2P 2.000 -9.1041258E+00 1.9405529E-01 2.9690219E-01 4.8614968E-01 2.7052889E+00 6.2902446E+01
> 2P 2.000 -9.0735022E+00 1.9234866E-01 2.9645480E-01 4.8603999E-01 2.7043227E+00 6.2822412E+01
> 3S 1.000 -1.0878541E+00 2.9229783E+01 4.1553776E+00 1.8919617E+00 7.2068651E-01
> 3S 1.000 -8.8775170E-01 3.1604015E+01 4.2438626E+00 1.9036101E+00 7.2402079E-01
> 3P* 1.000 -4.6442261E-01 7.9415784E+01 6.4475288E+00 2.3215625E+00 5.8248088E-01
> 3P* 0.000 -2.7621315E-01 1.1443191E+02 7.4136855E+00 2.4614687E+00 5.6064252E-01
> 3P 2.000 -4.6042138E-01 8.0649286E+01 6.4959005E+00 2.3301759E+00 5.8005227E-01 3.7773200E+00
> 3P 0.000 -2.7242986E-01 1.1708022E+02 7.4892061E+00 2.4735418E+00 5.5768379E-01 3.5655831E+00
>
> Examples of the low lying states I find in case.output1up and case.output1dn are:
> From up:
> K= 0.25000 0.50000 0.50000 1
> MATRIX SIZE 9192 WEIGHT= 2.00 PGR:
> EIGENVALUES ARE:
> -11.4326572 -11.4326443 -11.4304960 -11.4304836 -11.3548181
> -11.3548178 -11.3547956 -11.3547954 -7.8222277 -7.8221979
> -7.8198177 -7.8197860 -7.8139864 -7.8138903 -7.8117306
> -7.8116318 -7.8093135 -7.8092692 -7.8073401 -7.8073004
> -7.7374667 -7.7374653 -7.7373719 -7.7373716 -7.7338651
> -7.7338636 -7.7337751 -7.7337738 -7.7332502 -7.7332486
> -7.7329941 -7.7329924 -5.4113446 -5.4113297 -5.4091455
> -5.4091305 -5.3250955 -5.3250950 -5.3250626 -5.3250622
>
> From dn:
> K= 0.12500 0.25000 0.50000 1
> MATRIX SIZE 4988 WEIGHT= 2.00 PGR:
> EIGENVALUES ARE:
> -8.5813282 -8.5812344 -8.5638097 -8.5637104 -8.3260488
> -8.3257490 -8.3242101 -8.3239949 -5.6312550 -5.6309409
> -5.6112020 -5.6109385 -5.6107774 -5.6105375 -5.6015340
> -5.6014578 -4.8776979 -4.8773081 -4.8649380 -4.8645429
> -4.8612661 -4.8609989 -4.8603466 -4.8597815 -4.8473038
> -4.8470997 -4.8453215 -4.8450239 -4.6260569 -4.6254883
> -4.6248374 -4.6245754 -4.6239155 -4.6237133 -4.6234791
> -4.6230319 -4.6227243 -4.6219883 -4.6218599 -4.6214088
>
> One question is why does the code print?
> 0 EIGENVALUES BELOW THE ENERGY -12.20000
> ********************************************************
> i.e. that there are no eigenvalues more than 3Ry below the core separation energy?
>
> At the bottom of case. scfup I obtain:
>
> Most likely no ghostbands, but adjust Energy-parameters or use -in1ef / -in1new
>
>
> :WARN : QTL-B value eq. 4.97 in Band of energy -8.32610 ATOM= 134 L= 0
> :WARN : You should change the E-parameter in case.in1 or use -in1ef / -in1new switch
>
>
>
> QTL-B VALUE .EQ. 5.47621 in Band of energy -8.32606 ATOM= 134 L= 0
>
> However, from case.outputst I would have thought that the L=0 states of this phosphorus atom would be in the core? I have attempted adjusting the El parameters in case. in1 to
> adjust to this band energy, but the problem returns at a slightly difference band energy.
>
> In case.in1 for phosphorus I have used:
> 0.30 4 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)
> 1 0.30 0.000 CONT 1
> 1 -8.80 0.001 STOP 1
> 0 -0.79 0.002 CONT 1
> 0 -10.5 0.000 CONT 1
>
> The default for the L=0 LO was 0.3.
>
> Any help as to whether these s-states are real or how to describe them would be very helpful.
>
> Many thanks,
> David Tompsett.
>
>
>
> _______________________________________________
> Wien mailing list
> Wien at zeus.theochem.tuwien.ac.at
> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
--
P.Blaha
--------------------------------------------------------------------------
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-15671 FAX: +43-1-58801-15698
Email: blaha at theochem.tuwien.ac.at WWW: http://info.tuwien.ac.at/theochem/
--------------------------------------------------------------------------
More information about the Wien
mailing list