[Wien] Linearization of Low-lying s-state

Peter Blaha pblaha at theochem.tuwien.ac.at
Mon Mar 7 16:43:41 CET 2011


As mentioned by L.Marks, the choice of RMTs might be non-trivial and I also doubt that
P with 1.06 bohr ?? is a good choice, but smaller O, bigger P might be better.

Somehow ? you got the P-2s states into your in1 file. It is usually that the energies
from lstart are 1-2 Ry lower than what you will have in the scf run.

One would need to see the eigenvalues/charges from the first iteration on.
Did you always have these eigenvalues at -11 (up) and -8 (dn) Ry ?

I would NOT expect such a large spin-splitting for P-2s  !!! ???

Have you checked case.inc ? Are the 2s there ?

I can also see:
 >        MATRIX SIZE 9192  WEIGHT= 2.00  PGR:
 >        MATRIX SIZE 4988  WEIGHT= 2.00  PGR:
which looks funny !?? because the matrix size differs by a factor of 2.

In any case, with a case.in1
 >    0.30    4  0      (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)
 >   1    0.30      0.000 CONT 1
 >   1   -8.80      0.001 STOP 1
 >   0   -0.79      0.002 CONT 1
 >   0   -10.5      0.000 CONT 1
I'm not surprised that you get P-2s states.

It could be that your calculation is completely spoiled by now.... ???


Am 07.03.2011 14:44, schrieb David Tompsett:
> Dear All,
>
> I am performing calculations on slabs of the material LiFePO4 using GGA+U in the latest Wien2k release.
>
> To perform min_lapw internal parameter optimisation I reduce the RMT's and use R=1.06 for Phosphorus. This results in a need to reduce the default for energy separation of core
> states to -9.2Ry during lstart. As a result Phosphorus 2p states become part of the valence and need to be treated by a LO. I am having trouble with large QTL-B values regarding
> the L=0 states though.
>
> The energy parameters for phosphorus from case.outputst are:
>
>                      P                                   RHFS
>
>           OCCUPANCY    ENERGY(RYD)         (R4)              (R2)              (R)               (R-1)             (R-3)
>
>    1S      1.000    -1.5314154E+02     5.4020520E-04     1.4448157E-02     1.0359168E-01     1.4648276E+01
>    1S      1.000    -1.5311976E+02     5.3994095E-04     1.4444579E-02     1.0357948E-01     1.4649640E+01
>    2S      1.000    -1.2760822E+01     1.9082408E-01     3.2223815E-01     5.1970457E-01     2.8247951E+00
>    2S      1.000    -1.2738260E+01     1.8994048E-01     3.2198220E-01     5.1963797E-01     2.8236582E+00
>    2P*     1.000    -9.1715513E+00     1.9086915E-01     2.9430623E-01     4.8389989E-01     2.7216785E+00
>    2P*     1.000    -9.1408359E+00     1.8923948E-01     2.9388805E-01     4.8380643E-01     2.7206626E+00
>    2P      2.000    -9.1041258E+00     1.9405529E-01     2.9690219E-01     4.8614968E-01     2.7052889E+00     6.2902446E+01
>    2P      2.000    -9.0735022E+00     1.9234866E-01     2.9645480E-01     4.8603999E-01     2.7043227E+00     6.2822412E+01
>    3S      1.000    -1.0878541E+00     2.9229783E+01     4.1553776E+00     1.8919617E+00     7.2068651E-01
>    3S      1.000    -8.8775170E-01     3.1604015E+01     4.2438626E+00     1.9036101E+00     7.2402079E-01
>    3P*     1.000    -4.6442261E-01     7.9415784E+01     6.4475288E+00     2.3215625E+00     5.8248088E-01
>    3P*     0.000    -2.7621315E-01     1.1443191E+02     7.4136855E+00     2.4614687E+00     5.6064252E-01
>    3P      2.000    -4.6042138E-01     8.0649286E+01     6.4959005E+00     2.3301759E+00     5.8005227E-01     3.7773200E+00
>    3P      0.000    -2.7242986E-01     1.1708022E+02     7.4892061E+00     2.4735418E+00     5.5768379E-01     3.5655831E+00
>
> Examples of the low lying states I find in case.output1up and case.output1dn are:
>  From up:
>       K=   0.25000   0.50000   0.50000            1
>        MATRIX SIZE 9192  WEIGHT= 2.00  PGR:
>       EIGENVALUES ARE:
>      -11.4326572  -11.4326443  -11.4304960  -11.4304836  -11.3548181
>      -11.3548178  -11.3547956  -11.3547954   -7.8222277   -7.8221979
>       -7.8198177   -7.8197860   -7.8139864   -7.8138903   -7.8117306
>       -7.8116318   -7.8093135   -7.8092692   -7.8073401   -7.8073004
>       -7.7374667   -7.7374653   -7.7373719   -7.7373716   -7.7338651
>       -7.7338636   -7.7337751   -7.7337738   -7.7332502   -7.7332486
>       -7.7329941   -7.7329924   -5.4113446   -5.4113297   -5.4091455
>       -5.4091305   -5.3250955   -5.3250950   -5.3250626   -5.3250622
>
>  From dn:
>       K=   0.12500   0.25000   0.50000            1
>        MATRIX SIZE 4988  WEIGHT= 2.00  PGR:
>       EIGENVALUES ARE:
>       -8.5813282   -8.5812344   -8.5638097   -8.5637104   -8.3260488
>       -8.3257490   -8.3242101   -8.3239949   -5.6312550   -5.6309409
>       -5.6112020   -5.6109385   -5.6107774   -5.6105375   -5.6015340
>       -5.6014578   -4.8776979   -4.8773081   -4.8649380   -4.8645429
>       -4.8612661   -4.8609989   -4.8603466   -4.8597815   -4.8473038
>       -4.8470997   -4.8453215   -4.8450239   -4.6260569   -4.6254883
>       -4.6248374   -4.6245754   -4.6239155   -4.6237133   -4.6234791
>       -4.6230319   -4.6227243   -4.6219883   -4.6218599   -4.6214088
>
> One question is why does the code print?
>              0 EIGENVALUES BELOW THE ENERGY  -12.20000
>         ********************************************************
> i.e. that there are no eigenvalues more than 3Ry below the core separation energy?
>
> At the bottom of case. scfup I obtain:
>
>      Most likely no ghostbands, but adjust Energy-parameters or use -in1ef / -in1new
>
>
> :WARN : QTL-B value eq.   4.97  in Band of energy  -8.32610   ATOM=  134   L=  0
> :WARN : You should change the E-parameter in case.in1 or use -in1ef / -in1new switch
>
>
>
>     QTL-B VALUE .EQ.    5.47621   in Band of energy   -8.32606   ATOM=  134   L=  0
>
> However, from case.outputst I would have thought that the L=0 states of this phosphorus atom would be in the core? I have attempted adjusting the El parameters in case. in1 to
> adjust to this band energy, but the problem returns at a slightly difference band energy.
>
> In case.in1 for phosphorus I have used:
>    0.30    4  0      (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)
>   1    0.30      0.000 CONT 1
>   1   -8.80      0.001 STOP 1
>   0   -0.79      0.002 CONT 1
>   0   -10.5      0.000 CONT 1
>
> The default for the L=0 LO was 0.3.
>
> Any help as to whether these s-states are real or how to describe them would be very helpful.
>
> Many thanks,
> David Tompsett.
>
>
>
> _______________________________________________
> Wien mailing list
> Wien at zeus.theochem.tuwien.ac.at
> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien

-- 

                                       P.Blaha
--------------------------------------------------------------------------
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-15671             FAX: +43-1-58801-15698
Email: blaha at theochem.tuwien.ac.at    WWW: http://info.tuwien.ac.at/theochem/
--------------------------------------------------------------------------


More information about the Wien mailing list