[Wien] vcoul
John Rundgren
jru at kth.se
Tue Nov 29 14:24:35 CET 2011
Dear Wien2k Team,
This is about vcoul(L,M=0,0) generated by Fe3O4 and Sr3Mn2O7. I compare
two potential curves as functions of radius R:
(1) VC(R)=vcoul00(R)/sqrt(4*pi), spherically symmetric;
(2) VCpois(R), spherically symmetric, obtained from clmsum00 and
Poisson's equation (using subroutine charg2.f). My boundary condition of
PE is the conventional one giving zero VCpois for a neutral muffin-tin
and large R.
In summary, I expect that VC and VCpois are equal up to a constant,
individual for individual atoms depending on the SCF boundary condition
in Wien2k. Results for Fe3O4 and Sr3Mn2O7:
Fe3O4, Table for potential value at RMT:
Fe1 Fe2 O
VC -0.13 0.18 0.37
VCpois -2.03 -2.08 -1.15
VCpois(R)=VC(R)+const with great accuracy.
Sr3Mn2O7 with RMT's from setrmt_lapw, Table for potential value at RMT:
Sr1 Sr2 Mn O1 O2 O3
VC -472 -382 -231 -258 -230 -250
VCpois -2.0 -2.0 -2.6 -7.3 -7.5 -7.0
First observation: the values differ by factors 35-235. How is the
boundary condition for vcoul defined in Wien2k?
Second observation: dVC/dR is <0 and dVCpois/dR is >0 for R in the
neighborhood of RMT. Indeed, the latter behavior corresponds to a
muffin-tin with negative charge.
Third observation: VCpois(R) .neq. VC(R)+const. The disagreement is
significantly great, see 1st Attachment.
When the Fe3O4 calculation is used for LEED, the agreement
theory-experiment is satisfactory [Surf.Sci. 602(2008)1299]. On the
other hand, a LEED investigation on Sr3Mn2O7 would respond badly on a
potential disagreement like the one demonstrated in the 1st Attachment.
2nd Attachment is SR3Mn2O7.struct.
VC versus VCpois is a dilemma for Sr3Mn2O7. Is there an expert's input
to w2web that would make the potentials equal? A discussion would be
much appreciated.
With best regards,
John Rundgren, KTH, Stockholm
-------------- next part --------------
A non-text attachment was scrubbed...
Name: VCandVCpois.ps
Type: application/postscript
Size: 21564 bytes
Desc: not available
URL: <http://zeus.theochem.tuwien.ac.at/pipermail/wien/attachments/20111129/49eb1fc6/attachment.ps>
-------------- next part --------------
Sr3Mn2O7
B LATTICE,NONEQUIV.ATOMS: 6139_I4/mmm
MODE OF CALC=RELA unit=bohr
7.321177 7.321177 38.069289 90.000000 90.000000 90.000000
ATOM -1: X=0.00000000 Y=0.00000000 Z=0.50000000
MULT= 1 ISPLIT=-2
Sr1 NPT= 781 R0=0.00001000 RMT= 2.36 Z: 38.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -2: X=0.00000000 Y=0.00000000 Z=0.31656000
MULT= 2 ISPLIT=-2
-2: X=0.00000000 Y=0.00000000 Z=0.68344000
Sr2 NPT= 781 R0=0.00001000 RMT= 2.36 Z: 38.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -3: X=0.00000000 Y=0.00000000 Z=0.09705000
MULT= 2 ISPLIT=-2
-3: X=0.00000000 Y=0.00000000 Z=0.90295000
Mn1 NPT= 781 R0=0.00005000 RMT= 1.90 Z: 25.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -4: X=0.00000000 Y=0.00000000 Z=0.00000000
MULT= 1 ISPLIT=-2
O 1 NPT= 781 R0=0.00005000 RMT= 1.69 Z: 8.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -5: X=0.00000000 Y=0.00000000 Z=0.19181000
MULT= 2 ISPLIT=-2
-5: X=0.00000000 Y=0.00000000 Z=0.80819000
O 2 NPT= 781 R0=0.00005000 RMT= 1.69 Z: 8.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -6: X=0.00000000 Y=0.50000000 Z=0.09558000
MULT= 4 ISPLIT= 8
-6: X=0.00000000 Y=0.50000000 Z=0.90442000
-6: X=0.50000000 Y=0.00000000 Z=0.09558000
-6: X=0.50000000 Y=0.00000000 Z=0.90442000
O 3 NPT= 781 R0=0.00005000 RMT= 1.69 Z: 8.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
16 NUMBER OF SYMMETRY OPERATIONS
1 0 0 0.00000000
0-1 0 0.00000000
0 0-1 0.00000000
1
0-1 0 0.00000000
1 0 0 0.00000000
0 0-1 0.00000000
2
-1 0 0 0.00000000
0-1 0 0.00000000
0 0-1 0.00000000
3
0 1 0 0.00000000
1 0 0 0.00000000
0 0-1 0.00000000
4
0-1 0 0.00000000
-1 0 0 0.00000000
0 0-1 0.00000000
5
1 0 0 0.00000000
0 1 0 0.00000000
0 0-1 0.00000000
6
1 0 0 0.00000000
0-1 0 0.00000000
0 0 1 0.00000000
7
0-1 0 0.00000000
1 0 0 0.00000000
0 0 1 0.00000000
8
0 1 0 0.00000000
-1 0 0 0.00000000
0 0-1 0.00000000
9
-1 0 0 0.00000000
0 1 0 0.00000000
0 0-1 0.00000000
10
-1 0 0 0.00000000
0-1 0 0.00000000
0 0 1 0.00000000
11
0 1 0 0.00000000
1 0 0 0.00000000
0 0 1 0.00000000
12
0-1 0 0.00000000
-1 0 0 0.00000000
0 0 1 0.00000000
13
1 0 0 0.00000000
0 1 0 0.00000000
0 0 1 0.00000000
14
0 1 0 0.00000000
-1 0 0 0.00000000
0 0 1 0.00000000
15
-1 0 0 0.00000000
0 1 0 0.00000000
0 0 1 0.00000000
16
More information about the Wien
mailing list