[Wien] wien2k with conventional cell?

Gang Li gangli.pku at gmail.com
Tue Oct 29 10:18:27 CET 2013


Dear Prof. Blaha

   Thank you for your reply. This is actually a 'have-to' in my case, as
these unit cell vectors are convenient for me to construct a slab (from the
maximal localized wannier function) with surface at z-direction. I have
tried with primitive cell in wien2k and rotated the basis after I got the
full hopping matrix from wannier90, however the quality of the surface
state structure is worse than what I obtained (in a pseudopotential code)
with these "convenient" unit vectors for which I do not need to rotate
basis.

    I still have a question: even if I use P lattice and indicate a, b, c
and every angles, wien2k probably would still suggest me a new structure
after the symmetry analysis which (very possibly) changes the unit cell
vectors back to the primitive ones. How can I continue with my initial
structure without encountering any problem if I do not accept the suggested
structure from wien2k?

thanks,
Gang


On Tue, Oct 29, 2013 at 9:54 AM, Peter Blaha
<pblaha at theochem.tuwien.ac.at>wrote:

> In WIEN2k you cannot input a bravais matrix directly.
>
> If you really need to do this in such a cell (why at all ????) , you have
> to use a "P" cell and give a,b,c (a/sqrt(2)) and alpha,beta,gamma (as
> angles between your basis vectors).
> In addition you have to transform the positions of As into fractions of
> these vectors....
>
>
> On 10/29/2013 09:13 AM, Gang Li wrote:
>
>> Dear all,
>>
>>      As a follow-up question, taking GaAs as an example, if I actually
>> want to work with an unit cell with the following lattice vectors:
>>        a1 = a*( 0.5, 0.5, 0.0),
>>        a2 = a*(-0.5, 0.5, 0.0),
>>        a3 = a*( 0.0, 0.5, 0.5),
>> which contains only one Ga and one As atoms in each unit cell, at
>> positions:
>>        Ga = (0.0,   0.0,    0.0),
>>        As = (0.25, -0.25,  0.5),
>> what should I do then?
>>
>>      This is different from the primitive cell and also only contains
>> the one Ga and As atoms, thus, it is not possible for me to relabel
>> atoms to reduce the symmetry. Is there any way to run wien2k with these
>> unit vectors?
>>
>> best,
>> Gang
>>
>> On Mon, Oct 28, 2013 at 10:29 PM, Gang Li <gangli.pku at gmail.com
>> <mailto:gangli.pku at gmail.com>> wrote:
>>
>>     Dear Oleg
>>
>>         Thank you so much. This is exactly what I want to know. Once a
>>     time, I thought to have wien2k to skip the symmetry analysis,
>>     however, I encountered some other problem originated from doing so.
>>     Your suggestion is much better.
>>
>>     thanks,
>>     Gang
>>
>>     On 28 Oct 2013, at 22:22, Oleg Rubel <orubel at lakeheadu.ca
>>     <mailto:orubel at lakeheadu.ca>> wrote:
>>
>>      > Hello,
>>      >
>>      > here is an example of structure file for GaAs. It has a
>>     zinc-blende structure with 2-atom primitive cell or 8-atom
>>     conventional cell. The key is to label atoms (Ga1, Ga2, etc.) in
>>     order to avoid their recognition as equivalent spices.
>>      >
>>      > Please note that such a structure will have lower symmetry (in
>>     this case just translational symmetry), which will significantly
>>     decrease the computational performance. It is therefore not advised
>>     to do it without a special need.
>>      >
>>      > Oleg
>>      >
>>      > ++++++++++++++++++++++++++++++**+
>>      > GaAs
>>      > P   LATTICE,NONEQUIV.ATOMS:  8 1 P1
>>      > MODE OF CALC=RELA unit=bohr
>>      > 10.841631 10.841631 10.841631 90.000000 90.000000 90.000000
>>      > ATOM  -1: X=0.00000000 Y=0.00000000 Z=0.00000000
>>      >          MULT= 1          ISPLIT= 8
>>      > Ga1        NPT=  781  R0=0.00005000 RMT=    2.0000   Z: 31.0
>>      > LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>>      >                     0.0000000 1.0000000 0.0000000
>>      >                     0.0000000 0.0000000 1.0000000
>>      > ATOM  -2: X=0.50000000 Y=0.50000000 Z=0.00000000
>>      >          MULT= 1          ISPLIT= 8
>>      > Ga2        NPT=  781  R0=0.00005000 RMT=    2.0000   Z: 31.0
>>      > LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>>      >                     0.0000000 1.0000000 0.0000000
>>      >                     0.0000000 0.0000000 1.0000000
>>      > ATOM  -3: X=0.50000000 Y=0.00000000 Z=0.50000000
>>      >          MULT= 1          ISPLIT= 8
>>      > Ga3        NPT=  781  R0=0.00005000 RMT=    2.0000   Z: 31.0
>>      > LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>>      >                     0.0000000 1.0000000 0.0000000
>>      >                     0.0000000 0.0000000 1.0000000
>>      > ATOM  -4: X=0.00000000 Y=0.50000000 Z=0.50000000
>>      >          MULT= 1          ISPLIT= 8
>>      > Ga4        NPT=  781  R0=0.00005000 RMT=    2.0000   Z: 31.0
>>      > LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>>      >                     0.0000000 1.0000000 0.0000000
>>      >                     0.0000000 0.0000000 1.0000000
>>      > ATOM  -5: X=0.25000000 Y=0.25000000 Z=0.25000000
>>      >          MULT= 1          ISPLIT= 8
>>      > As1        NPT=  781  R0=0.00005000 RMT=    2.0000   Z: 33.0
>>      > LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>>      >                     0.0000000 1.0000000 0.0000000
>>      >                     0.0000000 0.0000000 1.0000000
>>      > ATOM  -6: X=0.75000000 Y=0.75000000 Z=0.25000000
>>      >          MULT= 1          ISPLIT= 8
>>      > As2        NPT=  781  R0=0.00005000 RMT=    2.0000   Z: 33.0
>>      > LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>>      >                     0.0000000 1.0000000 0.0000000
>>      >                     0.0000000 0.0000000 1.0000000
>>      > ATOM  -7: X=0.75000000 Y=0.25000000 Z=0.75000000
>>      >          MULT= 1          ISPLIT= 8
>>      > As3        NPT=  781  R0=0.00005000 RMT=    2.0000   Z: 33.0
>>      > LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>>      >                     0.0000000 1.0000000 0.0000000
>>      >                     0.0000000 0.0000000 1.0000000
>>      > ATOM  -8: X=0.25000000 Y=0.75000000 Z=0.75000000
>>      >          MULT= 1          ISPLIT= 8
>>      > As4        NPT=  781  R0=0.00005000 RMT=    2.0000   Z: 33.0
>>      > LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>>      >                     0.0000000 1.0000000 0.0000000
>>      >                     0.0000000 0.0000000 1.0000000
>>      >   1      NUMBER OF SYMMETRY OPERATIONS
>>      > 1 0 0 0.00000000
>>      > 0 1 0 0.00000000
>>      > 0 0 1 0.00000000
>>      >       1
>>      >
>>      > On 28/10/2013 4:06 PM, Gang Li wrote:
>>      >> Dear wien2k experts:
>>      >>
>>      >>    I am wondering if it is possible for wien2k to run with
>>     conventional
>>      >> cell instead of primitive cell?  If it is, could anyone figure
>>     out to me
>>      >> how this is realized in practice.
>>      >>
>>      >> thanks,
>>      >> Gang
>>      >>
>>      >>
>>      >>
>>      >> ______________________________**_________________
>>      >> Wien mailing list
>>      >> Wien at zeus.theochem.tuwien.ac.**at<Wien at zeus.theochem.tuwien.ac.at>
>>     <mailto:Wien at zeus.theochem.**tuwien.ac.at<Wien at zeus.theochem.tuwien.ac.at>
>> >
>>
>>      >> http://zeus.theochem.tuwien.**ac.at/mailman/listinfo/wien<http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien>
>>      >> SEARCH the MAILING-LIST at:
>>     http://www.mail-archive.com/**wien@zeus.theochem.tuwien.ac.**
>> at/index.html<http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html>
>>      >>
>>      >
>>      > --
>>      > Oleg Rubel, PhD
>>      > Scientist, Thunder Bay Regional Research Institute
>>      > Adjunct Professor, Dept Physics, Lakehead University
>>      > 290 Munro St, Thunder Bay, P7A 7T1, Ontario, Canada
>>      > Phone: +1-807-7663350 <tel:%2B1-807-7663350>
>>      > Fax: +1-807-3441948 <tel:%2B1-807-3441948>
>>      > E-mail: orubel at lakeheadu.ca <mailto:orubel at lakeheadu.ca>
>>
>>      > Homepage: http://www.tbrri.com/~orubel/
>>      > ______________________________**_________________
>>      > Wien mailing list
>>      > Wien at zeus.theochem.tuwien.ac.**at<Wien at zeus.theochem.tuwien.ac.at>
>>     <mailto:Wien at zeus.theochem.**tuwien.ac.at<Wien at zeus.theochem.tuwien.ac.at>
>> >
>>
>>      > http://zeus.theochem.tuwien.**ac.at/mailman/listinfo/wien<http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien>
>>      > SEARCH the MAILING-LIST at:
>>     http://www.mail-archive.com/**wien@zeus.theochem.tuwien.ac.**
>> at/index.html<http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html>
>>
>>
>>
>>
>> ______________________________**_________________
>> Wien mailing list
>> Wien at zeus.theochem.tuwien.ac.**at <Wien at zeus.theochem.tuwien.ac.at>
>> http://zeus.theochem.tuwien.**ac.at/mailman/listinfo/wien<http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien>
>> SEARCH the MAILING-LIST at:  http://www.mail-archive.com/**
>> wien at zeus.theochem.tuwien.ac.**at/index.html<http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html>
>>
>>
> --
>
>                                       P.Blaha
> ------------------------------**------------------------------**
> --------------
> Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
> Phone: +43-1-58801-165300             FAX: +43-1-58801-165982
> Email: blaha at theochem.tuwien.ac.at    WWW: http://info.tuwien.ac.at/**
> theochem/ <http://info.tuwien.ac.at/theochem/>
> ------------------------------**------------------------------**
> --------------
>
> ______________________________**_________________
> Wien mailing list
> Wien at zeus.theochem.tuwien.ac.**at <Wien at zeus.theochem.tuwien.ac.at>
> http://zeus.theochem.tuwien.**ac.at/mailman/listinfo/wien<http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien>
> SEARCH the MAILING-LIST at:  http://www.mail-archive.com/**
> wien at zeus.theochem.tuwien.ac.**at/index.html<http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://zeus.theochem.tuwien.ac.at/pipermail/wien/attachments/20131029/06e1ef5b/attachment.htm>


More information about the Wien mailing list