[Wien] ifort compiler options
Fecher, Gerhard
fecher at uni-mainz.de
Wed Aug 6 20:38:22 CEST 2014
Maybe try also:
-fltconsistency
and / or
-fp-model strict (or -fp-model precise might be enough)
I don't have all switches at hand, but there are more about floating point operations found in the manual of the compiler
The warning of INTELL is:
"Note
The options set by the O option may change from release to release." !!!!
There are warnings with many compiler flags that improve speed on cost of consistency
Ciao
Gerhard
DEEP THOUGHT in D. Adams; Hitchhikers Guide to the Galaxy:
"I think the problem, to be quite honest with you,
is that you have never actually known what the question is."
====================================
Dr. Gerhard H. Fecher
Institut of Inorganic and Analytical Chemistry
Johannes Gutenberg - University
55099 Mainz
________________________________________
Von: wien-bounces at zeus.theochem.tuwien.ac.at [wien-bounces at zeus.theochem.tuwien.ac.at]" im Auftrag von "Laurence Marks [L-marks at northwestern.edu]
Gesendet: Mittwoch, 6. August 2014 19:26
An: A Mailing list for WIEN2k users
Betreff: Re: [Wien] ifort compiler options
Sadly, no surprise. Intel sometimes designs ifort for speed more than accuracy, and they have done some things recently that can reduce accuracy.
Put -O3 immediately after -FR, the order matters. It may be better, or not.
On Aug 6, 2014 12:03 PM, "James Peter" <jsqdmgleap at gmail.com<mailto:jsqdmgleap at gmail.com>> wrote:
Hi,
Recently, I recompiled WIEN2k_13 with -O3 option. (I used to use the default option O2). The full compiler option is as follows
-FR -mp1 -w -prec_div -pc80 -pad -ip -DINTEL_VML -traceback -assume buffered_io -O3
I calculated the band structure of CsTlCl3 in high symmetry structure (struct file is attached at the end of the email). It is surprising to find splitting at L point and along W-L. After a miserable week, I changed the compiler option back to O2 and now the splitting at L goes away. A copy of the bands structures calculated with O3 and O2 options can be downloaded here https://www.dropbox.com/s/2xu0mx2z31djns0/testup%20copy.pdf.
Title
F LATTICE,NONEQUIV.ATOMS: 4225_Fm-3m
MODE OF CALC=RELA unit=ang
20.451758 20.451758 20.451758 90.000000 90.000000 90.000000
ATOM 1: X=0.25000000 Y=0.25000000 Z=0.25000000
MULT= 2 ISPLIT= 2
1: X=0.75000000 Y=0.75000000 Z=0.75000000
Cs NPT= 781 R0=0.00001000 RMT= 2.50000 Z: 55.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM 2: X=0.00000000 Y=0.00000000 Z=0.00000000
MULT= 1 ISPLIT= 2
Tl1 NPT= 781 R0=0.00000500 RMT= 2.50000 Z: 81.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM 3: X=0.50000000 Y=0.00000000 Z=0.00000000
MULT= 1 ISPLIT= 2
Tl2 NPT= 781 R0=0.00000500 RMT= 2.50000 Z: 81.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -4: X=0.25000000 Y=0.00000000 Z=0.00000000
MULT= 6 ISPLIT=-2
-4: X=0.75000000 Y=0.00000000 Z=0.00000000
-4: X=0.00000000 Y=0.25000000 Z=0.00000000
-4: X=0.00000000 Y=0.75000000 Z=0.00000000
-4: X=0.00000000 Y=0.00000000 Z=0.25000000
-4: X=0.00000000 Y=0.00000000 Z=0.75000000
Cl NPT= 781 R0=0.00010000 RMT= 2.29 Z: 17.0
LOCAL ROT MATRIX: 0.0000000 0.0000000 1.0000000
0.0000000 1.0000000 0.0000000
-1.0000000 0.0000000 0.0000000
48 NUMBER OF SYMMETRY OPERATIONS
1 0 0 0.00000000
0-1 0 0.00000000
0 0-1 0.00000000
1
1 0 0 0.00000000
0 0-1 0.00000000
0-1 0 0.00000000
2
-1 0 0 0.00000000
0-1 0 0.00000000
0 0-1 0.00000000
3
-1 0 0 0.00000000
0 0-1 0.00000000
0-1 0 0.00000000
4
0 1 0 0.00000000
-1 0 0 0.00000000
0 0-1 0.00000000
5
0 0 1 0.00000000
-1 0 0 0.00000000
0-1 0 0.00000000
6
0 1 0 0.00000000
1 0 0 0.00000000
0 0-1 0.00000000
7
0 0 1 0.00000000
1 0 0 0.00000000
0-1 0 0.00000000
8
0 1 0 0.00000000
0 0-1 0.00000000
-1 0 0 0.00000000
9
0 0 1 0.00000000
0-1 0 0.00000000
-1 0 0 0.00000000
10
0 1 0 0.00000000
0 0-1 0.00000000
1 0 0 0.00000000
11
0 0 1 0.00000000
0-1 0 0.00000000
1 0 0 0.00000000
12
0-1 0 0.00000000
-1 0 0 0.00000000
0 0-1 0.00000000
13
0-1 0 0.00000000
1 0 0 0.00000000
0 0-1 0.00000000
14
0 0-1 0.00000000
-1 0 0 0.00000000
0-1 0 0.00000000
15
0 0-1 0.00000000
1 0 0 0.00000000
0-1 0 0.00000000
16
1 0 0 0.00000000
0 1 0 0.00000000
0 0-1 0.00000000
17
-1 0 0 0.00000000
0 1 0 0.00000000
0 0-1 0.00000000
18
1 0 0 0.00000000
0 0 1 0.00000000
0-1 0 0.00000000
19
-1 0 0 0.00000000
0 0 1 0.00000000
0-1 0 0.00000000
20
0-1 0 0.00000000
0 0-1 0.00000000
-1 0 0 0.00000000
21
0 0-1 0.00000000
0-1 0 0.00000000
-1 0 0 0.00000000
22
0-1 0 0.00000000
0 0-1 0.00000000
1 0 0 0.00000000
23
0 0-1 0.00000000
0-1 0 0.00000000
1 0 0 0.00000000
24
0 0 1 0.00000000
0 1 0 0.00000000
-1 0 0 0.00000000
25
0 1 0 0.00000000
0 0 1 0.00000000
-1 0 0 0.00000000
26
0 0 1 0.00000000
0 1 0 0.00000000
1 0 0 0.00000000
27
0 1 0 0.00000000
0 0 1 0.00000000
1 0 0 0.00000000
28
1 0 0 0.00000000
0 0-1 0.00000000
0 1 0 0.00000000
29
-1 0 0 0.00000000
0 0-1 0.00000000
0 1 0 0.00000000
30
1 0 0 0.00000000
0-1 0 0.00000000
0 0 1 0.00000000
31
-1 0 0 0.00000000
0-1 0 0.00000000
0 0 1 0.00000000
32
0 0 1 0.00000000
-1 0 0 0.00000000
0 1 0 0.00000000
33
0 0 1 0.00000000
1 0 0 0.00000000
0 1 0 0.00000000
34
0 1 0 0.00000000
-1 0 0 0.00000000
0 0 1 0.00000000
35
0 1 0 0.00000000
1 0 0 0.00000000
0 0 1 0.00000000
36
0 0-1 0.00000000
0 1 0 0.00000000
-1 0 0 0.00000000
37
0-1 0 0.00000000
0 0 1 0.00000000
-1 0 0 0.00000000
38
0 0-1 0.00000000
0 1 0 0.00000000
1 0 0 0.00000000
39
0-1 0 0.00000000
0 0 1 0.00000000
1 0 0 0.00000000
40
0 0-1 0.00000000
-1 0 0 0.00000000
0 1 0 0.00000000
41
0-1 0 0.00000000
-1 0 0 0.00000000
0 0 1 0.00000000
42
0 0-1 0.00000000
1 0 0 0.00000000
0 1 0 0.00000000
43
0-1 0 0.00000000
1 0 0 0.00000000
0 0 1 0.00000000
44
1 0 0 0.00000000
0 0 1 0.00000000
0 1 0 0.00000000
45
1 0 0 0.00000000
0 1 0 0.00000000
0 0 1 0.00000000
46
-1 0 0 0.00000000
0 0 1 0.00000000
0 1 0 0.00000000
47
-1 0 0 0.00000000
0 1 0 0.00000000
0 0 1 0.00000000
48
More information about the Wien
mailing list