[Wien] Spontanouse Polarization
Oleg Rubel
orubel at lakeheadu.ca
Mon Jul 21 14:16:41 UTC 2014
Dear Mostefa,
here is what I have got for BaTiO3:
SUMMARY OF POLARIZATION CALCULATION
=======================================================================================
Value | spin | dir(1) | dir(2) |
dir(3)
---------------------------------------------------------------------------------------
Electronic polarization (C/m2) sp(1) [-9.782796e-12, -2.902497e-13,
4.879618e-01]
Ionic polarization (C/m2) sp(1) [ 1.365657e-11, 1.365657e-11,
-1.760570e-01]
Tot. spin polariz.=Pion+Pel (C/m2) sp(1) [ 3.873774e-12, 1.336632e-11,
3.119048e-01]
---------------------------------------------------------------------------------------
TOTAL POLARIZATION (C/m2) both [ 3.873774e-12, 1.336632e-11,
3.119048e-01]
=======================================================================================
Please see the enclosed file with the full log on lambda1 case. You can
then compare to your data. One possible reason that your calculation did
not work might be related to the version of w2w (I suspect it is too old?).
Please make sure that you use the *latest version 1.0-betta4 of w2w* from
http://www.ifp.tuwien.ac.at/forschung/arbeitsgruppen/cms/software-download/wien2wannier/
I would strongly advise to *update the BerryPI* (Version 1.2, Mar 12, 2014).
As to the second part of your question (Rhombohedral-LaCoO3 polarization in
(111) direction): I do not see a problem. You have 3 components of
polarization, which should be sufficient. It is hard to say for sure
without seeing the structure, but I suspect that you even do not need to do
the extra work with coordinate transformations as in this example (
https://github.com/spichardo/BerryPI/wiki/Tutorial-3:-Non-orthogonal-lattice-vectors).
Just give it a try.
Thank you
Oleg
On Sun, Jul 20, 2014 at 6:57 AM, mostefa djermouni <
djermouni_mostefa at yahoo.fr> wrote:
> Dear Oleg Rubel,
>
> Please I have 2 questions:
> First, I repeat your tutorial_1 (BaTiO3) with Berrypi_1.1, but
> unfortunately, I have found this attached results, could you please help
> me.
> Second, Can I calculate Rhombohedral-LaCoO3 polarization in (111)
> direction?
>
> Thanks in advance.
>
> -------------------------------------------------------
> Mostefa DJERMOUNI
> Modeling and Simulation in Materials Science Laboratory
> University of Sidi Bel-Abbes
> 22000 Sidi Bel-Abbes, Algeria
> Tel: +213 795 626 105
> -------------------------------------------------------
>
> _______________________________________________
> Wien mailing list
> Wien at zeus.theochem.tuwien.ac.at
> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
> SEARCH the MAILING-LIST at:
> http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://zeus.theochem.tuwien.ac.at/pipermail/wien/attachments/20140721/b708cdc5/attachment.htm>
-------------- next part --------------
[oleg at feynman lambda1]$ ls
lambda1.struct
[oleg at feynman lambda1]$ init_lapw -b -vxc 13 -ecut -6 -numk 230
next is setrmt
specify nn-bondlength factor: (usually=2) [and optionally dlimit, dstmax (about
1.d-5, 20)]
DSTMAX: 20.0000000000000
iix,iiy,iiz 4 4 4 30.1902640000000
30.1902640000000 30.5077360000000
NAMED ATOM: Ba1 Z changed to IATNR+999 to determine equivalency
NAMED ATOM: Ti1 Z changed to IATNR+999 to determine equivalency
NAMED ATOM: O 1 Z changed to IATNR+999 to determine equivalency
NAMED ATOM: O 2 Z changed to IATNR+999 to determine equivalency
ATOM 1 Ba1 ATOM 4 O 2
RMT( 1)=2.50000 AND RMT( 4)=1.54000
SUMS TO 4.04000 LT. NN-DIST= 5.27603
ATOM 2 Ti1 ATOM 3 O 1
RMT( 2)=1.64000 AND RMT( 3)=1.54000
SUMS TO 3.18000 LT. NN-DIST= 3.49609
ATOM 3 O 1 ATOM 2 Ti1
RMT( 3)=1.54000 AND RMT( 2)=1.64000
SUMS TO 3.18000 LT. NN-DIST= 3.49609
ATOM 4 O 2 ATOM 2 Ti1
RMT( 4)=1.54000 AND RMT( 2)=1.64000
SUMS TO 3.18000 LT. NN-DIST= 3.78154
NN ENDS
0.002u 0.002s 0:00.06 0.0% 0+0k 0+0io 1pf+0w
> sgroup (08:17:47) 0.000u 0.000s 0:00.00 0.0% 0+0k 0+0io 0pf+0w
Names of point group: 4mm 4mm C4v
Names of point group: 4mm 4mm C4v
Names of point group: 4mm 4mm C4v
Names of point group: mm2 mm2 C2v
Number and name of space group: 99 (P 4 m m)
> symmetry (08:17:47) 0.000u 0.002s 0:00.03 0.0% 0+0k 0+0io 1pf+0w
4 Atoms found: Ba Ti O O
generate atomic configuration for atom 1 : Ba
generate atomic configuration for atom 2 : Ti
generate atomic configuration for atom 3 : O
generate atomic configuration for atom 4 : O
SELECT XCPOT:
recommended: 13: PBE-GGA (Perdew-Burke-Ernzerhof 96)
5: LSDA
11: WC-GGA (Wu-Cohen 2006)
19: PBEsol-GGA (Perdew etal. 2008)
SELECT ENERGY to separate core and valence states:
recommended: -6.0 Ry (check how much core charge leaks out of MT-sphere)
ALTERNATIVELY: specify charge localization
(between 0.97 and 1.0) to select core state
LSTART ENDS
> inputfiles prepared (08:17:47)
> inputfiles for lapw1c/2c prepared, no inversion present (08:17:47)
8 symmetry operations without inversion
inversion added (non-spinpolarized non-so calculation)
NUMBER OF K-POINTS IN WHOLE CELL: (0 allows to specify 3 divisions of G)
length of reciprocal lattice vectors: 0.832 0.832 0.824 6.148 6.148 6.084
Shift of k-mesh allowed. Do you want to shift: (0=no, 1=shift)
18 k-points generated, ndiv= 6 6 6
KGEN ENDS
> dstart -c -p (08:17:47) running dstart in single mode
DSTART ENDS
2.984u 0.027s 0:03.07 97.7% 0+0k 0+0io 1pf+0w
-----> new lambda1.in0 generated
init_lapw finished ok
[oleg at feynman lambda1]$ export OMP_NUM_THREADS=4
[oleg at feynman lambda1]$ run_lapw
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 2 ETEST: 0 CTEST: 0
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 3 ETEST: 0 CTEST: 0
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 4 ETEST: .2551300450000000 CTEST: .6252252
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 5 ETEST: .1014479250000000 CTEST: 1.2324531
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 6 ETEST: .1387476700000000 CTEST: .2285290
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 7 ETEST: .0745384250000000 CTEST: .4421198
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 8 ETEST: .0550732150000000 CTEST: .7853062
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 9 ETEST: .0222566100000000 CTEST: .7707660
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 10 ETEST: .0072099700000000 CTEST: .7338369
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 11 ETEST: .0265815150000000 CTEST: .5707598
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 12 ETEST: .0244580850000000 CTEST: .4503108
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 13 ETEST: .0169380700000000 CTEST: .3750159
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 14 ETEST: .0229112750000000 CTEST: .1265219
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 15 ETEST: .0088122650000000 CTEST: .0407074
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 16 ETEST: .0003662400000000 CTEST: .0160793
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 17 ETEST: .0001270150000000 CTEST: .0137425
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 1 1 1
> stop
[oleg at feynman lambda1]$
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 0 1 1
in cycle 17 ETEST: .0001270150000000 CTEST: .0137425
LAPW0 END
LAPW1 END
LAPW2 END
CORE END
MIXER END
ec cc and fc_conv 1 1 1
> stop
[oleg at feynman lambda1]$ vim log-lambda1.txt
[oleg at feynman lambda1]$ berrypi -k6:6:6
[ BerryPI ] +++Version 1.2 (Mar 12, 2014)
[ BerryPI ] Python version: 2.7.4
[ BerryPI ] Numpy version: 1.6.2
[ BerryPI ] Proceed with the k-mesh [6, 6, 6]
[ BerryPI ] Starting BerryPI Automation for lambda1
[ BerryPI ] New working directory: /home/oleg/tmp/tutorial1/lambda1
[ BerryPI ] w2kpath = /home/oleg/WIEN2k.13.1
[ BerryPI ] pypath = /home/oleg/.local/bin/python2.7
[ BerryPI ] bppath = /home/oleg/BerryPI
[ BerryPI ] Calling command: rm -f lambda1.broyd*
[ BerryPI ] Copied lambda1.struct to lambda1.ksym
[ BerryPI ] Calling command: echo "0 6 6 6 0" | x kgen -fbz
1 symmetry operations without inversion
NUMBER OF K-POINTS IN WHOLE CELL: (0 allows to specify 3 divisions of G)
length of reciprocal lattice vectors: 0.832 0.832 0.824 0.000 0.000 0.000
Specify 3 mesh-divisions (n1,n2,n3):
Shift of k-mesh allowed. Do you want to shift: (0=no, 1=shift)
216 k-points generated, ndiv= 6 6 6
KGEN ENDS
0.004u 0.005s 0:00.01 0.0% 0+0k 0+0io 0pf+0w
[ BerryPI ] Calling command: cp lambda1.klist lambda1.klist_w90
[ BerryPI ] Calling command: x lapw1
LAPW1 END
425.211u 15.154s 2:12.88 331.3% 0+0k 0+0io 0pf+0w
[ BerryPI ] Determine number of bloch bands in non-sp mode
[ BerryPI ] Number of bloch bands is [[1, 20]]
[ BerryPI ] Calling command: /home/oleg/.local/bin/python2.7 /home/oleg/WIEN2k.13.1/write_inwf -mode MMN -bands 1 20
[ BerryPI ] Calling command: write_win
[ BerryPI ] Calling command: /home/oleg/.local/bin/python2.7 /home/oleg/BerryPI/win2nnkp.py lambda1
[ BerryPI ] file lambda1.scf2 found; will extract the Fermi energy
:FER : F E R M I - ENERGY(TETRAH.M.)= 0.5561915025
[ BerryPI ] Ef = 0.5561915025 Ry
[ BerryPI ] Fermi energy is written to lambda1.fermi
[ BerryPI ] Calling command: x w2w
W2W END
108.669u 4.977s 0:36.10 314.7% 0+0k 0+0io 2pf+0w
[ BerryPI ] Finished Berry phase computation for lambda1
[ BerryPI ] Performing main calculation on lambda1
[ BerryPI ] Checking existance of lambda1.outputst
[ BerryPI ] -- OK
[ BerryPI ] Checking existance of lambda1.scf
[ BerryPI ] -- OK
[ BerryPI ] Checking existance of lambda1.struct
[ BerryPI ] -- OK
[ BerryPI ] Checking existance of lambda1.outputd
[ BerryPI ] -- OK
Initial Berry phases and their wrapped values in the range [-pi ... +pi]
=======================================================================================
| init k-point | phase raw (rad) | phase wrap. (rad)
---------------------------------------------------------------------------------------
direction(1)
spin(1)
path( 1) 1 -6.283185e+00 4.722574e-13
path( 2) 2 9.410250e-13 9.410250e-13
path( 3) 3 -2.793321e-12 -2.793321e-12
path( 4) 4 6.283185e+00 -4.215438e-12
path( 5) 5 -6.283185e+00 3.044491e-11
path( 6) 6 2.249122e-10 2.249122e-10
path( 7) 7 6.283185e+00 -5.537201e-11
path( 8) 8 -6.283185e+00 1.143812e-11
path( 9) 9 6.283185e+00 5.807999e-12
path( 10) 10 -9.983125e-13 -9.983125e-13
path( 11) 11 -2.234657e-12 -2.234657e-12
path( 12) 12 -3.435585e-12 -3.435585e-12
path( 13) 13 4.130030e-13 4.130030e-13
path( 14) 14 -6.283185e+00 -2.579767e-10
path( 15) 15 -6.283185e+00 -2.539168e-12
path( 16) 16 1.421085e-13 1.421085e-13
path( 17) 17 2.422396e-12 2.422396e-12
path( 18) 18 -1.912587e-10 -1.912587e-10
path( 19) 19 -2.204015e-11 -2.204015e-11
path( 20) 20 -6.283185e+00 -2.206523e-10
path( 21) 21 6.283185e+00 -3.596969e-11
path( 22) 22 2.439382e-12 2.439382e-12
path( 23) 23 6.283185e+00 -3.578972e-11
path( 24) 24 -6.283185e+00 -2.252661e-10
path( 25) 25 -2.150913e-11 -2.150913e-11
path( 26) 26 6.283185e+00 -2.597911e-10
path( 27) 27 -1.784128e-12 -1.784128e-12
path( 28) 28 3.303136e-12 3.303136e-12
path( 29) 29 2.938927e-12 2.938927e-12
path( 30) 30 -6.283185e+00 -1.882389e-10
path( 31) 31 -6.283185e+00 9.220738e-11
path( 32) 32 -6.283185e+00 5.896590e-12
path( 33) 33 2.334266e-11 2.334266e-11
path( 34) 34 -7.320811e-12 -7.320811e-12
path( 35) 35 9.705181e-12 9.705181e-12
path( 36) 36 6.283185e+00 9.181465e-12
---------------------------------------------------------------------------------------
direction(2)
spin(1)
path( 1) 1 -6.283185e+00 6.659736e-11
path( 2) 2 -2.251207e-10 -2.251207e-10
path( 3) 3 6.283185e+00 -3.025168e-11
path( 4) 4 5.682066e-12 5.682066e-12
path( 5) 5 -6.283185e+00 -1.204012e-12
path( 6) 6 -2.290390e-12 -2.290390e-12
path( 7) 37 -5.718970e-11 -5.718970e-11
path( 8) 38 -6.283185e+00 1.725309e-11
path( 9) 39 3.416323e-12 3.416323e-12
path( 10) 40 -6.283185e+00 -1.395147e-15
path( 11) 41 -6.283185e+00 -4.680720e-12
path( 12) 42 -6.283185e+00 -2.092582e-11
path( 13) 73 -6.283185e+00 1.582851e-10
path( 14) 74 -2.177112e-10 -2.177112e-10
path( 15) 75 6.283185e+00 1.713241e-12
path( 16) 76 6.283185e+00 -4.608172e-12
path( 17) 77 6.283185e+00 -2.336174e-12
path( 18) 78 6.283185e+00 2.252675e-10
path( 19) 109 -2.276357e-11 -2.276357e-11
path( 20) 110 6.283185e+00 3.197678e-12
path( 21) 111 -5.260237e-13 -5.260237e-13
path( 22) 112 -6.283185e+00 2.122717e-12
path( 23) 113 3.934630e-13 3.934630e-13
path( 24) 114 2.364331e-12 2.364331e-12
path( 25) 145 3.487433e-12 3.487433e-12
path( 26) 146 6.283185e+00 -2.229871e-10
path( 27) 147 6.283185e+00 4.606777e-12
path( 28) 148 6.283185e+00 -2.987011e-12
path( 29) 149 -2.056133e-12 -2.056133e-12
path( 30) 150 2.193841e-10 2.193841e-10
path( 31) 181 7.645939e-11 7.645939e-11
path( 32) 182 1.160760e-11 1.160760e-11
path( 33) 183 5.278222e-12 5.278222e-12
path( 34) 184 -6.283185e+00 -3.055373e-12
path( 35) 185 -4.944434e-12 -4.944434e-12
path( 36) 186 -1.450395e-11 -1.450395e-11
---------------------------------------------------------------------------------------
direction(3)
spin(1)
path( 1) 1 -4.288563e+00 1.994622e+00
path( 2) 7 1.811044e+00 1.811044e+00
path( 3) 13 1.620022e+00 1.620022e+00
path( 4) 19 1.558713e+00 1.558713e+00
path( 5) 25 1.620022e+00 1.620022e+00
path( 6) 31 1.811044e+00 1.811044e+00
path( 7) 37 8.094230e+00 1.811044e+00
path( 8) 43 -4.628762e+00 1.654424e+00
path( 9) 49 -4.798934e+00 1.484251e+00
path( 10) 55 -4.855660e+00 1.427526e+00
path( 11) 61 1.484251e+00 1.484251e+00
path( 12) 67 1.654424e+00 1.654424e+00
path( 13) 73 1.620022e+00 1.620022e+00
path( 14) 79 1.484251e+00 1.484251e+00
path( 15) 85 1.350433e+00 1.350433e+00
path( 16) 91 1.307904e+00 1.307904e+00
path( 17) 97 1.350433e+00 1.350433e+00
path( 18) 103 -4.798934e+00 1.484251e+00
path( 19) 109 -4.724472e+00 1.558713e+00
path( 20) 115 1.427526e+00 1.427526e+00
path( 21) 121 -4.975281e+00 1.307904e+00
path( 22) 127 -5.007650e+00 1.275535e+00
path( 23) 133 -4.975281e+00 1.307904e+00
path( 24) 139 7.710711e+00 1.427526e+00
path( 25) 145 -4.663164e+00 1.620022e+00
path( 26) 151 -4.798934e+00 1.484251e+00
path( 27) 157 1.350433e+00 1.350433e+00
path( 28) 163 -4.975281e+00 1.307904e+00
path( 29) 169 1.350433e+00 1.350433e+00
path( 30) 175 7.767437e+00 1.484251e+00
path( 31) 181 -4.472141e+00 1.811044e+00
path( 32) 187 1.654424e+00 1.654424e+00
path( 33) 193 -4.798934e+00 1.484251e+00
path( 34) 199 -4.855660e+00 1.427526e+00
path( 35) 205 7.767437e+00 1.484251e+00
path( 36) 211 1.654424e+00 1.654424e+00
=======================================================================================
CALCULATION OF ELECTRONIC POLARIZATION
=======================================================================================
Value | spin | dir(1) | dir(2) | dir(3)
---------------------------------------------------------------------------------------
Berry phase (rad) [-pi ... +pi] sp(1) [-3.092159e-11, -9.174250e-13, 1.526306e+00]
Berry phase (rad) up+dn [-6.184317e-11, -1.834850e-12, 3.052611e+00]
Berry phase (rad) [-pi ... +pi] up+dn [-6.184317e-11, -1.834850e-12, 3.052611e+00]
Electronic polarization (C/m2) sp(1) [-9.782796e-12, -2.902497e-13, 4.879618e-01]
=======================================================================================
CALCULATION OF IONIC POLARIZATION
=======================================================================================
Elem.| Fractional coord. | spin |valence| dir(1) | dir(2) | dir(3)
---------------------------------------------------------------------------------------
+------------ Ionic phase (rad) ------------+
Ba (0.0000, 0.0000, 0.0000) sp(1) 10.00 [ 0.000000e+00, 0.000000e+00, 0.000000e+00]
Ti (0.5000, 0.5000, 0.5152) sp(1) 12.00 [ 3.769911e+01, 3.769911e+01, 3.884323e+01]
O (0.5000, 0.5000, 0.9736) sp(1) 6.00 [ 1.884956e+01, 1.884956e+01, 3.670240e+01]
O (0.5000, 0.0000, 0.4834) sp(1) 6.00 [ 1.884956e+01, 0.000000e+00, 1.822516e+01]
O (0.0000, 0.5000, 0.4834) sp(1) 6.00 [ 0.000000e+00, 1.884956e+01, 1.822516e+01]
---------------------------------------------------------------------------------------
Total ionic phase (rad) sp(1) [ 7.539822e+01, 7.539822e+01, 1.119960e+02]
Total ionic phase wrap. (rad) sp(1) [ 8.633172e-11, 8.633172e-11, -1.101384e+00]
Ionic polarization (C/m2) sp(1) [ 1.365657e-11, 1.365657e-11, -1.760570e-01]
=======================================================================================
SUMMARY OF POLARIZATION CALCULATION
=======================================================================================
Value | spin | dir(1) | dir(2) | dir(3)
---------------------------------------------------------------------------------------
Electronic polarization (C/m2) sp(1) [-9.782796e-12, -2.902497e-13, 4.879618e-01]
Ionic polarization (C/m2) sp(1) [ 1.365657e-11, 1.365657e-11, -1.760570e-01]
Tot. spin polariz.=Pion+Pel (C/m2) sp(1) [ 3.873774e-12, 1.336632e-11, 3.119048e-01]
---------------------------------------------------------------------------------------
TOTAL POLARIZATION (C/m2) both [ 3.873774e-12, 1.336632e-11, 3.119048e-01]
=======================================================================================
Completed using BerryPI version: +++Version 1.2 (Mar 12, 2014)
Suggested reference:
S.J.Ahmed, J.Kivinen, B.Zaporzan, L.Curiel, S.Pichardo and O.Rubel
Comp. Phys. Commun. 184, 647 (2013)
Questions and comments are to be directed to
Dr. Oleg Rubel
Lakehead University
and
Thunder Bay Regional Research institute
290 Munro Street, Thunder Bay, ON Canada P7A 7T1
Tel: +1 (807) 766-3350
E-mail: rubelo at tbh.net
URL: http://www.tbrri.com/~orubel
or
Dr. Samuel Pichardo
Lakehead University
and
Sunnybrook Health Science Centre
2075 Bayview Avenue, Toronto, ON Canada M4N 3M5
Tel: +1 (416) 480-6156
E-mail: spichard at lakeheadu.ca
URL: http://www.proteus-mrighifu.net
[oleg at feynman lambda1]$ date
Mon Jul 21 08:27:59 CDT 2014
More information about the Wien
mailing list