[Wien] volume optimization of hcp type metal

Peter Blaha pblaha at theochem.tuwien.ac.at
Wed Mar 26 08:08:17 CET 2014


Why would you want to further decrease RMTs ?

x nn    tells you that you have plenty of space before spheres would 
overlap.

At your smallest volume you have now a pressure of just -3 GPa, so you 
are close to the minimum.
Just continue using smaller volumes.

On 03/26/2014 03:23 AM, bruce.tian wrote:
> Dear all:
> Thanks Prof. Blaha for your response! I did what you suggested. But the
> problem is still there. I tried to decrease the RMT in StructGen in
> w2web by setting "reduce RMTs by 30%". More larger values will make the
> core electrons leaking. In volume search I used -20% to 3%. Smaller
> volume will cause error in calculation. The structure file and
> calculated energies are listed bellow.  In StructGen I used 1
> unequavalent atom and two positions. There is no error reported in
> calculation.
>
> NMhcpNi-6
> H   LATTICE,NONEQUIV.ATOMS:  1
> MODE OF CALC=RELA unit=ang
>    5.059270  5.059270  8.288348 90.000000 90.000000120.000000
> ATOM  -1: X=0.33333333 Y=0.66666667 Z=0.75000000
>            MULT= 2          ISPLIT= 4
>        -1: X=0.66666667 Y=0.33333333 Z=0.25000000
> Ni         NPT=  781  R0=0.00005000 RMT=    1.7400   Z: 28.0
> LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>                       0.0000000 1.0000000 0.0000000
>                       0.0000000 0.0000000 1.0000000
>    24      NUMBER OF SYMMETRY OPERATIONS
> -1 0 0 0.00000000
> -1 1 0-0.00000001
>   0 0-1 0.00000000
>         1
> -1 1 0-0.00000001
> -1 0 0 0.00000000
>   0 0 1 0.00000000
>         2
> -1 0 0 0.00000000
>   0-1 0 0.00000000
>   0 0-1 0.00000000
>         3
> -1 1 0-0.00000001
>   0 1 0 0.00000000
>   0 0 1 0.00000000
>         4
>   0-1 0 0.00000000
> -1 0 0 0.00000000
>   0 0 1 0.00000000
>         5
>   0 1 0 0.00000000
> -1 1 0-0.00000001
>   0 0-1 0.00000000
>         6
>   0-1 0 0.00000000
>   1-1 0 0.00000001
>   0 0 1 0.00000000
>         7
>   0 1 0 0.00000000
>   1 0 0 0.00000000
>   0 0-1 0.00000000
>         8
>   1-1 0 0.00000001
>   0-1 0 0.00000000
>   0 0-1 0.00000000
>         9
>   1 0 0 0.00000000
>   0 1 0 0.00000000
>   0 0 1 0.00000000
>        10
>   1-1 0 0.00000001
>   1 0 0 0.00000000
>   0 0-1 0.00000000
>        11
>   1 0 0 0.00000000
>   1-1 0 0.00000001
>   0 0 1 0.00000000
>        12
>   0 1 0 0.00000000
> -1 1 0-0.00000001
>   0 0 1 0.50000000
>        13
>   0-1 0 0.00000000
>   1-1 0 0.00000001
>   0 0-1 0.50000000
>        14
> -1 1 0-0.00000001
>   0 1 0 0.00000000
>   0 0-1 0.50000000
>        15
> -1 0 0 0.00000000
> -1 1 0-0.00000001
>   0 0 1 0.50000000
>        16
>   0 1 0 0.00000000
>   1 0 0 0.00000000
>   0 0 1 0.50000000
>        17
>   0-1 0 0.00000000
> -1 0 0 0.00000000
>   0 0-1 0.50000000
>        18
>   1-1 0 0.00000001
>   0-1 0 0.00000000
>   0 0 1 0.50000000
>        19
>   1 0 0 0.00000000
>   0 1 0 0.00000000
>   0 0-1 0.50000000
>        20
> -1 1 0-0.00000001
> -1 0 0 0.00000000
>   0 0-1 0.50000000
>        21
> -1 0 0 0.00000000
>   0-1 0 0.00000000
>   0 0 1 0.50000000
>        22
>   1-1 0 0.00000001
>   1 0 0 0.00000000
>   0 0 1 0.50000000
>        23
>   1 0 0 0.00000000
>   1-1 0 0.00000001
>   0 0-1 0.50000000
>        24
>
>
> Equation of state: EOS2 (PRB52,8064)        info           7
>   a,b,c,d     -6054.753720      -428.329295      2151.094721
> -3607.383690
>   V0,B(GPa),BP,E0            NaN            NaN            NaN
>
>   Equation of state: Murnaghan                info           5
>   E=E0+[B*V/BP*(1/(BP-1)*(V0/V)**BP +1)-B*V0/(BP-1)]/14703.6
>   Pressure=B/BP*((V0/V)**BP -1)
>   V0,B(GPa),BP,E0     41942.4452        -8.0968        -0.3709
> -6066.576702
>           vol       energy         de(EOS2)      de(Murnaghan)
> Pressure(GPa)
>       151.6198    -6083.219846    -0.000408     0.000558        -19.117
>       142.7010    -6083.226930     0.000115    -0.003972        -19.177
>       173.0250    -6083.192747    -0.000502     0.001188        -18.981
>       167.6737    -6083.201851     0.000263     0.003379        -19.014
>       162.3224    -6083.209345     0.000487     0.003947        -19.047
>       178.3763    -6083.183679    -0.000168    -0.000978        -18.948
>       183.7276    -6083.173611     0.000212    -0.004155        -18.916
>                    Sigma:          0.000340     0.002993
>
>   Equation of state: Birch-Murnaghan                info           7
>   E = E0 + 9/16*(B/14703.6)*V0*[(eta**2-1)**3*BP +
> (eta**2-1)**2*(6-4*eta**2)]
>          --> eta = (V0/V)**(1/3)
>   Pressure = 3/2*B*(eta**7 - eta**5)*(1 + 3/4*(BP-4)*[eta**2 - 1])
>   V0,B(GPa),BP,E0    220684.5007        -0.0000         3.9901
> -6082.514657
>           vol       energy         de(Birch-Murnaghan)  Pressure(GPa)
>       151.6198    -6083.219846    -0.001343              -12.912
>       142.7010    -6083.226930     0.000568               -3.503
>       173.0250    -6083.192747     0.000077              -24.292
>       167.6737    -6083.201851     0.000654              -22.479
>       162.3224    -6083.209345     0.000384              -20.079
>       178.3763    -6083.183679     0.000107              -25.634
>       183.7276    -6083.173611    -0.000446              -26.596
>                    Sigma:          0.000646
>
>
>
> _______________________________________________
> Wien mailing list
> Wien at zeus.theochem.tuwien.ac.at
> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
> SEARCH the MAILING-LIST at:  http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
>

-- 

                                       P.Blaha
--------------------------------------------------------------------------
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-165300             FAX: +43-1-58801-165982
Email: blaha at theochem.tuwien.ac.at    WWW: 
http://info.tuwien.ac.at/theochem/
--------------------------------------------------------------------------


More information about the Wien mailing list