[Wien] Extraction of optimized lattice parameters using Simultaneous Optimization with option 6

Shafqat Hussain Shah shafqatshah at gmail.com
Tue Oct 14 09:35:44 CEST 2014


Dear All
I have trouble in extracting the optimized lattice parameters (a,b c) from
my optimized structures using option 6 plus MSR1a.
My system of interest has an orthorhombic structure. I want to
simultaneously optimize its volume and internal atomic positions. I have
used option 6 (with number of structures 10 at 1% change) of the optimizer
plus MSR1a with default parameters in case.inM. All the 10 structures are
geometry optimized well and forces on atoms are less than the tolerances.
Then I used the command
parabolfit_lapw -t 3 -f BIFOfm -scf *abc*.scf
to fit the data as shown in the end.
My question ; what is the best way to extract the optimized lattice
parameters for my system from this procedure????
I have tried following things but to no avail.
1>    I tried to plot the data (a,b,c, E) with a scatter plot in Origin
where E was color coded. The number of data points was not sufficient (10)
and it did not give the exact values of the optimized lattice parameters.
2>    I tried to find the minima of the fitted function with first order
and second order derivatives (Hessian) but it did not give any information.
3>    I looked up in the mailing list but could not find the answer to my
problem.
Any suggestion to extract the optimized lattice parameters from the data
will be highly appreciated.
Many thanks in advance.

Dr. Shafqat Hussain Shah

PS: I am using parallel WIEN2k_13 on a multicore machine.

shs28 at apollo1:~/WIEN2k/BIFO/BIFOfm> parabolfit_lapw -t 3 -f BIFOfm -scf
*abc*.scf

BIFOfm.ene and BIFOfm.latparam generated

Enter dimension of fit (number of variable lattice parameters, 1-6):

3 fitcase 10 parameter

lowest data point: -195723.042487450 15.0632000000000

15.7881200000000 11.2255400000000

10 -195723.042487450 -195722.955530700

-195722.964214750 -195722.971284580 -195722.954407870

-195722.971888480 -195722.957634800 -195722.968628590

-195722.944729150 -195723.042426910

 I INITIAL X(I) D(I)

 1 -0.195723D+06 0.100D+01

2 0.100000D+00 0.600D+00

3 0.150632D+02 0.600D+00

4 0.100000D+00 0.600D+00

5 0.157881D+02 0.600D+00

6 0.000000D+00 0.600D+00

7 0.100000D+00 0.600D+00

8 0.112255D+02 0.600D+00

9 0.000000D+00 0.600D+00

10 0.000000D+00 0.600D+00

 IT NF F RELDF PRELDF RELDX MODEL STPPAR D*STEP NPRELDF

 0 1 0.237D-01

1 3 0.217D-01 0.85D-01 0.83D+00 0.7D-06 G 0.7D-02 0.4D+00 0.10D+01

2 4 0.621D-02 0.71D+00 0.84D+00 0.3D-06 G 0.4D-02 0.2D+00 0.10D+01

3 6 0.333D-02 0.46D+00 0.47D+00 0.7D-07 G 0.1D+00 0.4D-01 0.82D+00

4 8 0.310D-02 0.69D-01 0.14D+00 0.2D-06 G 0.4D-01 0.1D+00 0.67D+00

5 9 0.257D-02 0.17D+00 0.19D+00 0.2D-06 G 0.3D-01 0.9D-01 0.55D+00

6 10 0.234D-02 0.87D-01 0.96D-01 0.2D-06 G 0.2D-01 0.8D-01 0.41D+00

7 11 0.229D-02 0.22D-01 0.19D-01 0.2D-07 G 0.1D-01 0.1D-01 0.35D+00

8 13 0.226D-02 0.16D-01 0.16D-01 0.6D-07 S 0.3D-01 0.3D-01 0.14D+00

9 14 0.225D-02 0.15D-02 0.12D-02 0.8D-08 G 0.9D-01 0.5D-02 0.10D+01

10 16 0.223D-02 0.12D-01 0.12D-01 0.5D-07 G 0.3D-01 0.3D-01 0.23D+00

11 17 0.220D-02 0.93D-02 0.60D-02 0.4D-07 G 0.1D-01 0.2D-01 0.10D+01

12 18 0.219D-02 0.64D-02 0.41D-02 0.2D-07 G 0.1D-01 0.2D-01 0.10D+01

13 20 0.217D-02 0.11D-01 0.12D-01 0.5D-07 G 0.3D-01 0.3D-01 0.28D+00

14 21 0.215D-02 0.77D-02 0.65D-02 0.2D-07 G 0.3D-01 0.1D-01 0.10D+01

15 22 0.212D-02 0.13D-01 0.19D-01 0.8D-07 S 0.2D-01 0.5D-01 0.35D+00

16 23 0.206D-02 0.28D-01 0.31D-01 0.7D-07 S 0.2D-01 0.4D-01 0.00D+00

17 25 0.202D-02 0.23D-01 0.24D-01 0.7D-07 S 0.6D-02 0.5D-01 0.00D+00

18 26 0.197D-02 0.23D-01 0.26D-01 0.4D-07 G 0.5D-02 0.7D-01 0.10D+01

19 27 0.192D-02 0.23D-01 0.55D-01 0.1D-06 G 0.6D-02 0.1D+00 0.10D+01

20 28 0.181D-02 0.56D-01 0.97D-01 0.9D-07 G 0.6D-02 0.1D+00 0.10D+01

21 29 0.168D-02 0.76D-01 0.12D+00 0.9D-07 G 0.6D-02 0.1D+00 0.10D+01

22 30 0.152D-02 0.95D-01 0.16D+00 0.1D-06 G 0.6D-02 0.1D+00 0.10D+01

23 31 0.130D-02 0.14D+00 0.18D+00 0.1D-06 G 0.6D-02 0.1D+00 0.10D+01

24 32 0.111D-02 0.15D+00 0.16D+00 0.1D-06 G 0.6D-02 0.1D+00 0.10D+01

25 33 0.943D-03 0.15D+00 0.15D+00 0.2D-06 G 0.5D-02 0.1D+00 0.10D+01

26 35 0.804D-03 0.15D+00 0.14D+00 0.2D-06 G 0.2D-02 0.1D+00 0.10D+01

27 37 0.747D-03 0.71D-01 0.72D-01 0.7D-07 G 0.2D-01 0.5D-01 0.10D+01

28 39 0.699D-03 0.63D-01 0.64D-01 0.8D-07 G 0.4D-02 0.5D-01 0.10D+01

29 40 0.622D-03 0.11D+00 0.24D+00 0.4D-06 G 0.4D-02 0.2D+00 0.10D+01

30 41 0.430D-03 0.31D+00 0.37D+00 0.5D-06 G 0.3D-02 0.2D+00 0.10D+01

31 42 0.364D-03 0.15D+00 0.45D+00 0.5D-06 S 0.6D-02 0.2D+00 0.62D+00

32 43 0.195D-03 0.46D+00 0.50D+00 0.5D-06 G 0.2D-02 0.2D+00 0.10D+01

33 44 0.117D-03 0.40D+00 0.43D+00 0.5D-06 G 0.2D-02 0.2D+00 0.10D+01

34 45 0.662D-04 0.44D+00 0.51D+00 0.5D-06 G 0.1D-02 0.2D+00 0.10D+01

35 47 0.325D-04 0.51D+00 0.69D+00 0.5D-06 S-G 0.6D-03 0.2D+00 0.10D+01

36 49 0.120D-04 0.63D+00 0.93D+00 0.5D-06 S-G 0.2D-03 0.2D+00 0.10D+01

37 53 0.328D-05 0.73D+00 0.15D+01 0.1D-08 S 0.1D+02 0.1D-02 0.00D+00

38 54 0.238D-05 0.27D+00 0.27D+00 0.2D-08 G 0.6D-01 0.1D-02 0.10D+01

39 58 0.404D-06 0.83D+00 0.97D+00 0.2D-06 G 0.1D-04 0.1D+00 0.10D+01

40 59 0.337D-07 0.92D+00 0.91D+00 0.2D-07 G 0.1D-06 0.6D-02 0.10D+01

41 60 0.318D-07 0.57D-01 0.42D-01 0.5D-08 G 0.6D-07 0.2D-02 0.10D+01

42 61 0.315D-07 0.71D-02 0.53D-02 0.2D-08 G 0.1D-06 0.7D-03 0.10D+01

43 62 0.315D-07 0.87D-03 0.66D-03 0.6D-09 G 0.3D-07 0.2D-03 0.10D+01

44 63 0.315D-07 0.13D-03 0.13D-03 0.3D-09 G 0.0D+00 0.1D-03 0.13D-03

45 67 0.315D-07 0.68D-07 0.13D-06 0.2D-12 G 0.2D+00 0.8D-07 0.10D+01

46 72 0.315D-07-0.44D-07 0.74D-08 0.8D-14 G 0.2D+02 0.3D-08 0.23D-04

 ***** FALSE CONVERGENCE *****

 FUNCTION 0.315053D-07 RELDX 0.794D-14

FUNC. EVALS 72 GRAD. EVALS 460

PRELDF 0.737D-08 NPRELDF 0.227D-04

 I FINAL X(I) D(I) G(I)

 1 -0.195723D+06 0.100D+01 -0.141D-08

2 0.241284D-01 0.568D+00 0.430D-07

3 0.156657D+02 0.671D+00 -0.947D-08

4 0.317814D-01 0.903D+00 -0.114D-08

5 0.153081D+02 0.646D+00 0.442D-08

6 0.602895D-01 0.508D+00 -0.512D-09

7 0.691222D-01 0.457D+00 -0.595D-10

8 0.113276D+02 0.161D+01 -0.143D-07

9 -0.545592D+01 0.110D+00 -0.489D-09

10 -0.521868D+01 0.535D+00 0.446D-09

Parabolic equation of state: info 8

E = x1 + x2(a-x3)^2

+ x4(b-x5)^2 + x6(a-x3)(b-x5)

+ x7(c-x8)^2 + x9(a-x3)(c-x8) + x10(b-x5)(c-x8)

Fitparameter are

-195722.961991 0.024128 15.665728 0.031781

 15.308083 0.060289 0.069122 11.327643

 -5.455925 -5.218681

lattic parameters energy de(EOS)

15.063200 15.788120 11.225540 -195723.042487 -0.000001

14.912570 15.947590 11.338930 -195722.955531 -0.000094

15.063200 15.947590 11.338930 -195722.964215 0.000194

15.213830 15.947590 11.338930 -195722.971285 -0.000037

15.063200 15.788120 11.338930 -195722.954408 -0.000100

15.063200 16.107070 11.338930 -195722.971888 -0.000028

15.063200 15.947590 11.225540 -195722.957635 0.000000

15.063200 15.947590 11.452320 -195722.968629 0.000000

14.912570 15.788120 11.338930 -195722.944729 0.000065

14.912570 15.947590 11.225540 -195723.042427 0.000001

Sigma: 0.000084

Optionally create data points from fit function

Enter number of datapoints for your 3 dimensional Energy surface

NI=0 terminates; NI=1 will use 1 specific value in I-th component and
allows to

generate 2D-cuts

0.000u 0.004s 0:00.01 0.0% 0+0k 1952+8io 5pf+0w
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://zeus.theochem.tuwien.ac.at/pipermail/wien/attachments/20141014/26d6f1f3/attachment.html>


More information about the Wien mailing list