[Wien] LDA-GGA and van der Waals

tran at theochem.tuwien.ac.at tran at theochem.tuwien.ac.at
Mon Mar 9 17:16:45 CET 2015


No. Formally, both LDA and GGA do not take into account van der Waals
interactions. vdW interactions are taken into account only with more
adanced functionals:
http://scitation.aip.org/content/aip/journal/jcp/141/7/10.1063/1.4893329

On Mon, 9 Mar 2015, Osama Yassin wrote:

> Dear Prof Blaha,
> 
> With reference to the paper
> 
> Calculation of the lattice constant of solids with semilocal functionals
> 
> Philipp Haas, Fabien Tran, and Peter Blaha
> 
> PHYSICAL REVIEW B79, 085104 2009
> 
> ​For layred metal dichalcogenides (e. g. WS2), does it sound correct if the
> difference between the lattice constants obtained by LDA and that obtained
> GGA ​is equivalent to the lattice contraction due to van der Waals forces?
> 
> 
> Osama          
> Department of Physics, Faculty of Science
> Taibah University, A-Madinah Al-Munawarh, K. Saudi Arabia
> A man would do nothing if he waited until he could do it so well that no one
> could find fault.​
> 
> On Sat, Mar 7, 2015 at 10:24 AM, Peter Blaha <pblaha at theochem.tuwien.ac.at>
> wrote:
>       There is a misunderstanding: No, don't take a "mean" energy.
>
>       Check also the corresponding charge. When it is large, it is a
>       major
>       component and needs an energy parameter close to this energy.
>
>                   In case.scf2 you can find under the line
>                   :EPH and :EPL
>                   the "mean" energy of the P-s states. If
>                   they are not close to   -0.73
>                   (thats where you expand P-s), change the
>                   corresponding input value.
> 
>
>             For P-s, :EPL and :EPH are -1.34 and -0.43, mean of
>             -0.89, fairly close to
>             -0.73?
> 
>
>       Together with the large P-s charge in :EPL it tells you, that
>       you should
>       lower the P-s parameter in case.in1 to -1.34
>       Whether one sets in addition a second l=0 Eparameter in case.in1
>       depends on
>       the E-separation between these EPL and EPH values, corresponding
>       charges
>       and the sphere radii (the larger the spheres: more probably
>       yes).
>       Here you have 0.9 Ry difference, but presumably the P-s charge
>       in the upper E-window is
>       very small and you have a very small spheres. Setting the two
>       energies to those values might lead to ghostbands and at least
>       at the beginning you
>       moved one E-parameter up to +6 Ry. As I said previously, you may
>       test it at the end
>       and set the second Al-s line to 0.30 (no search), so that the
>       actual E-parameter will be EF+0.2
>
>             Other than P-s they are not close.  Al-s has -7.24,
>             -0.34, mean of -3.79,
>             case.in1 has -7.65.
>             O-s has -1.21, -0.30, mean is -0.75, while case.in1
>             has -1.46.  Similarly
>             for Al-p and P-p.
> 
>
>       Again, there should be l=0 E-parameters close to -7.24 and 1.21,
>       respectively.
>       In addition there should be definitely a second Al-s line at
>       0.30, since there are
>       "real" Al 3s states in the valence region.
>
>             I had mostly read about a supercell with one full
>             core hole.  Some of these
>             are certainly cells where I do not want to build a
>             larger supercell than I
>             have to.  Is the HALF a core hole a better choice?
> 
>
>       Are you interested in XPS or in XAS. This is a VERY different
>       process where the
>       excited electron leave the bulk or stays whithin the bulk.
>
>       For XPS you are interested just in ONE number (Al-2p
>       ionizationpotential) and
>       Slaters transition state concept with  half a core hole applies.
>
>       For XAS you want to simulate a spectrum for a system with one
>       core hole and an additional e- in
>       the valence band. Use (at least for insulators) a full core
>       hole.
>
>             Do I understand correctly that whether I use a HALF
>             core-hole or a full one,
>             I then do minimization of the ionic positions again?
> 
>
>       No. Electronic spectroscopy is a very fast process and the ions
>       have no time to move
>       around.
> 
>
>             The user-guide says "The energy cut-off specified in
>             lstart during init lapw
>             (usually -6.0 Ry) defines the separation
>             into core- and band-states (the latter contain both,
>             semicore and valence)."
>             How do I get the Al 2p state into the core?
>             Do I have to change the cut-off and use .lcore, or
>             is there some way to move
>             just the Al 2p state into the core?
> 
>
>       Besides an Energy (-X Ry), you can also specify a charge
>       localization criterium
>       (like 0.999), which will put all states with less charge inside
>       sphere as valence.
>       Checkout case.outputst to see how much charge each state has
>       inside sphere:
>                 E-up(Ry)      E-dn(Ry)   Occupancy   q/sphere 
>       core-state
>         1S      -3.801989     -3.785331  1.00  1.00    0.9922  F
>         2S      -0.236724     -0.003329  1.00  0.00    0.0675  F
> 
> 
>
>             PS There was no "reply" button in the archive except
>             "Reply via email".  I
>             could not find an answer as to how to reply to a
>             post in either the Mail
>             Archive FAQ, or the WIEN mail archive.
>
>             Thanks,
>                David
> 
> ---------------------------------------------------------------------------
>
>             At Thu, 05 Mar 2015 22:41:38 -0800, Peter Blaha
>             wrote
>             I think you have solved the problem very well.
>
>             Due to the small P sphere and the fact, that P-s
>             states are relatively
>             high in energy, the two linearization energies must
>             be quite well
>             separated. (An alternative would have been to simply
>             remove the second
>             l=0 line for P and change to "3" lines only:
>                 0.30    3  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>                1    0.30      0.000 CONT 1
>                1   -8.83      0.001 STOP 1
>                0   -0.73      0.002 CONT 1
>
>             Two more checks towards the "end of the scf cycle":
>             In case.scf2 you can find under the line :EPH and
>             :EPL
>             the "mean" energy of the P-s states. If they are not
>             close to   -0.73
>             (thats where you expand P-s), change the
>             corresponding input value.
>
>             If the energy of the P-s states has gone down in
>             energy at the end of the
>             scf-cycles, you may
>             checkout if you can go down with this second E-s
>             input line from +6 back to
>             2.0
>             or even
>             back to 0.3  (sometimes such problems are
>             temporary).
>
>             PS: If you are interested in Al-2p XPS you should do
>             Slaters transition
>             state !
>             Put Al 2p into the core and introduce HALF a core
>             hole (compensated by a
>             background).
>             This gives much better core-eigenvalues that the
>             plain DFT groundstate
>             eigenvalues,
>             typically lt. 1 % error as compared to 10 % error in
>             comparison with
>             experiment.
>             In addition, final state screening effects are
>             better accounted for.
> 
>
>             Am 06.03.2015 um 00:44 schrieb David Olmsted:
> 
>
>             Ghostbands: pushed energy range in case.in1 to 6.3,
>             does this mean there is
>             a problem?
>
>             WIEN2k_14.2 (Release 15/10/2014)
>             Quad-Core AMD Opteron(tm) Processor 2378
>             Linux cluster
>             Intel 11.1 compilers with mkl.
>
>             The purpose of my computation is to compare
>             predicted XPS spectra for Al 2p
>             electon
>             for different environments of the Al atom in the
>             Al-P-O-H system.
>
>             User: beginner!  My first time using WEIN2k. 
>             Moderate amount of VASP work.
>
>             Issue: ghostbands
>
>             GGA-PBE, 48 atoms, K-mesh 6x6x4, no shift.  Not
>             spin-polarized.
>             Initial cell and positions from relaxed GGA-PBE
>             using VASP, same K-mesh.
>
>             RMT from w2web StructGen (3% reduction)
>                 H  0.63
>                 O  1.17
>                 P  1.34
>                 Al 1.72
>
>             RKmax 3.5 to get "effective RKmax" of 6.5 for O.
>
>             rmt(min)*kmax =    3.50000
>             gmin =   11.11111
>             gmax =   20.00000
>
>             ------- metavar_v.in0
>             TOT  XC_PBE   
>              (XC_LDA,XC_PBESOL,XC_WC,XC_MBJ,XC_REVTPSS)
>
>             NR2V      IFFT      (R2V)
>                 64 120 108    1.00  1    min IFFT-parameters,
>             enhancement factor, iprint
>             ---------
>
>             For default -6 Ry cutoff for core states, charge was
>             leaking out of RMT
>             sphere
>             for P 2p states.  Final iteration in
>             metavar_v.outputst:
>                         14         350
>                  14   1.85E-07    1.884765E+00   -8.645384E-01 
>              -8.645386E-01   1.72E-07
>             -1.67E-08    1.707034E-01    1.707034E-01
>                 1S      -153.17082     -153.17082
>                 2S       -12.78682      -12.78682
>                 2P*       -9.19366       -9.19366
>                 2P        -9.12626       -9.12626
>                 3S        -1.02668       -1.02668
>                 3P*       -0.40735       -0.40735
>                 3P        -0.40342       -0.40342
>
>             Cutoff set to -9.2 Ry.  (Also tried leaving it at
>             -6.0 Ry and touching
>             .lcore.  Similar results.)
>
>             ===============================================================
>             ---------------------------- Question
>             -------------------------
>             ===============================================================
>
>             With the original case.in1 file, had messages for
>             the P atom, L=0:
>             (All these messages are from the first run of
>             LAPW2.)
>
>             metavar_v.scf2_1:   QTL-B VALUE .EQ. 4951.54243 in
>             Band of energy  -6.46139
>             ATOM=    2  L=  0
>
>             increased 0.3 to 2.3 in case.in1, now:
>
>                  QTL-B VALUE .EQ. 1347.97207 in Band of energy 
>             -4.71553  ATOM=    2  L=
>             0
>
>             increased it 4.3
>
>                  QTL-B VALUE .EQ.  602.53449 in Band of energy 
>             -2.14697  ATOM=    2  L=
>             0
>
>             When I increased it to 6.3, no complaints.
>
>             The initial scf run has completed with no warnings;
>             the position
>             minimization is still running.
>
>             In the mailing list search, there are suggestions to
>             increase the (upper)
>             energy range to
>             1.3 or "even 2.0" Ry.  That makes me worry about the
>             fact that I had to
>             increase it to a much
>             larger value.  Does this mean something is going
>             wrong?
>
>             -------------------------  End of question
>             ------------------------
>             =========== case.in1
>             =============================================
>             WFFIL  EF=.1268392143   (WFFIL, WFPRI, ENFIL, SUPWF)
>                 3.5       10    4 (R-MT*K-MAX; MAX L IN WF,
>             V-NMT
>                 0.30    4  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                0    0.30      0.000 CONT 1
>                0   -7.65      0.001 STOP 1
>                1    0.30      0.000 CONT 1
>                1   -4.81      0.001 STOP 1
>                 0.30    4  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                1    0.30      0.000 CONT 1
>                1   -8.83      0.001 STOP 1
>                0   -0.73      0.002 CONT 1
>                0    6.30      0.000 CONT 1
>                 0.30    3  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                0   -1.46      0.002 CONT 1
>                0    0.30      0.000 CONT 1
>                1    0.30      0.000 CONT 1
>                 0.30    3  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                0   -1.46      0.002 CONT 1
>                0    0.30      0.000 CONT 1
>                1    0.30      0.000 CONT 1
>                 0.30    3  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                0   -1.46      0.002 CONT 1
>                0    0.30      0.000 CONT 1
>                1    0.30      0.000 CONT 1
>                 0.30    3  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                0   -1.46      0.002 CONT 1
>                0    0.30      0.000 CONT 1
>                1    0.30      0.000 CONT 1
>                 0.30    3  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                0   -1.46      0.002 CONT 1
>                0    0.30      0.000 CONT 1
>                1    0.30      0.000 CONT 1
>                 0.30    3  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                0   -1.46      0.002 CONT 1
>                0    0.30      0.000 CONT 1
>                1    0.30      0.000 CONT 1
>                 0.30    1  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                0    0.30      0.000 CONT 1
>                 0.30    1  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                0    0.30      0.000 CONT 1
>                 0.30    1  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                0    0.30      0.000 CONT 1
>                 0.30    1  0      (GLOBAL E-PARAMETER WITH n
>             OTHER CHOICES, global
>             APW/LAPW)
>                0    0.30      0.000 CONT 1
>             K-VECTORS FROM UNIT:4  -12.2       1.5   250   emin
>             / de (emax=Ef+de) /
>             nband #red
>
>             _______________________________________________
>             Wien mailing list
>             Wien at zeus.theochem.tuwien.ac.at
>             http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
>             SEARCH the MAILING-LIST at: 
>             http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
> 
>
>       --
>       -----------------------------------------
>       Peter Blaha
>       Inst. Materials Chemistry, TU Vienna
>       Getreidemarkt 9, A-1060 Vienna, Austria
>       Tel: +43-1-5880115671
>       Fax: +43-1-5880115698
>       email: pblaha at theochem.tuwien.ac.at
>       -----------------------------------------
>       _______________________________________________
>       Wien mailing list
>       Wien at zeus.theochem.tuwien.ac.at
>       http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
>       SEARCH the MAILING-LIST at: 
>       http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
> 
> 
> 
>


More information about the Wien mailing list