[Wien] Ghostbands: pushed energy range in case.in1 to 6.3, does this mean there is a problem?
David Olmsted
olmsted at berkeley.edu
Tue Mar 17 17:01:20 CET 2015
Peter,
Thank you very much for your help.
> Together with the large P-s charge in :EPL it tells you, that you should
> lower the P-s parameter in case.in1 to -1.34
> Whether one sets in addition a second l=0 Eparameter in case.in1 depends
on
> the E-separation between these EPL and EPH values, corresponding charges
> and the sphere radii (the larger the spheres: more probably yes).
> Here you have 0.9 Ry difference, but presumably the P-s charge in the
upper
> E-window is
> very small and you have a very small spheres. Setting the two
> energies to those values might lead to ghostbands and at least at the
beginning
> you
> moved one E-parameter up to +6 Ry. As I said previously, you may test it
at the
> end
> and set the second Al-s line to 0.30 (no search), so that the actual
> E-parameter will be EF+0.2
I can use all the data from case.in1new except the upper energy for P-s.
The value from case.scf2 is -0.43. Even after convergence I cannot use that
without getting ghost-bands. Raising that to 2.3 still leads to
ghost-bands, but raising it to 4.3 gets rid of them.
The P-s charge in the upper window is 0.18, so I assume not very small.
I also have a discrepancy in NEC01.
metavar_v.scfm::NEC01: NUCLEAR AND ELECTRONIC CHARGE 320.00000
319.96538
metavar_v.scfm::NEC02: NUCLEAR AND ELECTRONIC CHARGE 320.00000
320.00000
metavar_v.scfm::NEC03: NUCLEAR AND ELECTRONIC CHARGE 320.00000
320.00000
In case.scf there are three iterations, with these same values each time.
The difference is in the interstitial charge. (See below.) What kind of
problem does this missing charge represent?
Thanks,
David
---------------------- from case.scf --------------
CHARGES OF NEW CHARGE DENSITY
:NTO : INTERSTITIAL CHARGE = 96.079959
:NTO001: CHARGE SPHERE 1 = 10.449397
:NTO002: CHARGE SPHERE 2 = 10.843879
:NTO003: CHARGE SPHERE 3 = 5.650434
:NTO004: CHARGE SPHERE 4 = 5.645099
:NTO005: CHARGE SPHERE 5 = 5.637108
:NTO006: CHARGE SPHERE 6 = 5.637060
:NTO007: CHARGE SPHERE 7 = 5.678855
:NTO008: CHARGE SPHERE 8 = 5.673289
:NTO009: CHARGE SPHERE 9 = 0.185540
:NTO010: CHARGE SPHERE 10 = 0.188188
:NTO011: CHARGE SPHERE 11 = 0.192574
:NTO012: CHARGE SPHERE 12 = 0.189931
:NEC01: NUCLEAR AND ELECTRONIC CHARGE 320.00000 319.96538
CHARGES OF OLD CHARGE DENSITY
:OTO : INTERSTITIAL CHARGE = 96.114586
:OTO001: CHARGE SPHERE 1 = 10.449396
:OTO002: CHARGE SPHERE 2 = 10.843882
:OTO003: CHARGE SPHERE 3 = 5.650434
:OTO004: CHARGE SPHERE 4 = 5.645100
:OTO005: CHARGE SPHERE 5 = 5.637109
:OTO006: CHARGE SPHERE 6 = 5.637059
:OTO007: CHARGE SPHERE 7 = 5.678853
:OTO008: CHARGE SPHERE 8 = 5.673287
:OTO009: CHARGE SPHERE 9 = 0.185541
:OTO010: CHARGE SPHERE 10 = 0.188188
:OTO011: CHARGE SPHERE 11 = 0.192574
:OTO012: CHARGE SPHERE 12 = 0.189931
--------------------- from case.scf2 -------------
:FER : F E R M I - ENERGY(TETRAH.M.)= 0.0585227171
:POS002: ATOM -2 X,Y,Z = 0.90741 0.14393 0.17509 MULT= 4 ZZ= 15.000 P
LMMAX 49
:CHA002: TOTAL VALENCE CHARGE INSIDE SPHERE 2 = 6.8524 (RMT= 1.3400
)
:PCS002: PARTIAL CHARGES SPHERE = 2
S,P,D,F,PX,PY,PZ,D-Z2,D-X2Y2,D-XY,D-XZ,D-YZ
:QTL002: 0.3137 6.3817 0.1482 0.0096 2.1264 2.1273 2.1268 0.0298 0.0350
0.0239 0.0298 0.0284
Q-s-low E-s-low Q-p-low E-p-low Q-d-low E-d-low Q-f-low
E-f-low
:EPL002: 0.1339 -1.3382 6.0694 -8.4838 0.0236 -1.1658 0.0010
-1.2606
Q-s-hi E-s-hi Q-p-hi E-p-hi Q-d-hi E-d-hi Q-f-hi E-f-hi
:EPH002: 0.1806 -0.4341 0.3120 -0.2473 0.1247 -0.0509 0.0062
0.0077
QXX QXY QYY QZZ UP TO R
:VZZ002: 0.26457 0.21902 -0.28649 0.02194 1.340
--------------------------
Best,
David
---------------- case.in1 ---------------------
WFFIL EF=.1270252251 (WFFIL, WFPRI, ENFIL, SUPWF)
3.5 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT
-.0729810766 5 0 global e-param with N other choices, napw
0 -0.339 0.000 CONT 1
0 -7.236 0.001 STOP 1
1 -0.213 0.000 CONT 1
1 -4.450 0.001 STOP 1
2 -0.120 0.000 CONT 1
-.0729810766 5 0 global e-param with N other choices, napw
0 4.3 0.000 CONT 1
0 -1.338 0.000 CONT 1
1 -0.247 0.000 CONT 1
1 -8.485 0.001 STOP 1
2 -0.051 0.000 CONT 1
-.0729810766 3 0 global e-param with N other choices, napw
0 -0.299 0.000 CONT 1
0 -1.209 0.000 CONT 1
1 -0.076 0.000 CONT 1
-.0729810766 3 0 global e-param with N other choices, napw
0 -0.301 0.000 CONT 1
0 -1.205 0.000 CONT 1
1 -0.074 0.000 CONT 1
-.0729810766 3 0 global e-param with N other choices, napw
0 -0.313 0.000 CONT 1
0 -1.197 0.000 CONT 1
1 -0.067 0.000 CONT 1
-.0729810766 3 0 global e-param with N other choices, napw
0 -0.302 0.000 CONT 1
0 -1.197 0.000 CONT 1
1 -0.064 0.000 CONT 1
-.0729810766 3 0 global e-param with N other choices, napw
0 -0.170 0.000 CONT 1
0 -1.261 0.000 CONT 1
1 -0.143 0.000 CONT 1
-.0729810766 3 0 global e-param with N other choices, napw
0 -0.147 0.000 CONT 1
0 -1.276 0.000 CONT 1
1 -0.152 0.000 CONT 1
-.0729810766 1 0 global e-param with N other choices, napw
0 -0.321 0.000 CONT 1
-.0729810766 1 0 global e-param with N other choices, napw
0 -0.341 0.000 CONT 1
-.0729810766 1 0 global e-param with N other choices, napw
0 -0.328 0.000 CONT 1
-.0729810766 1 0 global e-param with N other choices, napw
0 -0.319 0.000 CONT 1
K-VECTORS FROM UNIT:4 -12.2 1.5 250 emin / de (emax=Ef+de) /
nband #red
---------------------
================== case.struct (unchanged from original email)
===========================
metavar_v
P 12 14_P21/n
RELA
9.787912 18.527587 15.955713 90.000000 91.334564 90.000000
ATOM -1: X=0.40732795 Y=0.32651476 Z=0.28976316
MULT= 4 ISPLIT= 8
-1: X=0.59267205 Y=0.67348524 Z=0.71023684
-1: X=0.09267205 Y=0.82651476 Z=0.21023684
-1: X=0.90732795 Y=0.17348524 Z=0.78976316
Al NPT= 781 R0=0.00010000 RMT= 1.7200 Z: 13.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -2: X=0.90740105 Y=0.14392189 Z=0.17505642
MULT= 4 ISPLIT= 8
-2: X=0.09259895 Y=0.85607811 Z=0.82494358
-2: X=0.59259895 Y=0.64392189 Z=0.32494358
-2: X=0.40740105 Y=0.35607811 Z=0.67505642
P NPT= 781 R0=0.00010000 RMT= 1.3400 Z: 15.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -3: X=0.18051105 Y=0.17702773 Z=0.24558658
MULT= 4 ISPLIT= 8
-3: X=0.81948895 Y=0.82297227 Z=0.75441342
-3: X=0.31948895 Y=0.67702773 Z=0.25441342
-3: X=0.68051105 Y=0.32297227 Z=0.74558658
O NPT= 781 R0=0.00010000 RMT= 1.1700 Z: 8.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -4: X=0.87041860 Y=0.20768838 Z=0.00775131
MULT= 4 ISPLIT= 8
-4: X=0.12958140 Y=0.79231162 Z=0.99224869
-4: X=0.62958140 Y=0.70768838 Z=0.49224869
-4: X=0.37041860 Y=0.29231162 Z=0.50775131
O NPT= 781 R0=0.00010000 RMT= 1.1700 Z: 8.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -5: X=0.70101255 Y=0.20706922 Z=0.28467272
MULT= 4 ISPLIT= 8
-5: X=0.29898745 Y=0.79293078 Z=0.71532728
-5: X=0.79898745 Y=0.70706922 Z=0.21532728
-5: X=0.20101255 Y=0.29293078 Z=0.78467272
O NPT= 781 R0=0.00010000 RMT= 1.1700 Z: 8.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -6: X=0.87954320 Y=0.98599620 Z=0.16978428
MULT= 4 ISPLIT= 8
-6: X=0.12045680 Y=0.01400380 Z=0.83021572
-6: X=0.62045680 Y=0.48599620 Z=0.33021572
-6: X=0.37954320 Y=0.51400380 Z=0.66978428
O NPT= 781 R0=0.00010000 RMT= 1.1700 Z: 8.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -7: X=0.11471143 Y=0.44235098 Z=0.26980014
MULT= 4 ISPLIT= 8
-7: X=0.88528857 Y=0.55764902 Z=0.73019986
-7: X=0.38528857 Y=0.94235098 Z=0.23019986
-7: X=0.61471143 Y=0.05764902 Z=0.76980014
O NPT= 781 R0=0.00010000 RMT= 1.1700 Z: 8.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -8: X=0.45235906 Y=0.35662746 Z=0.06686154
MULT= 4 ISPLIT= 8
-8: X=0.54764094 Y=0.64337254 Z=0.93313846
-8: X=0.04764094 Y=0.85662746 Z=0.43313846
-8: X=0.95235906 Y=0.14337254 Z=0.56686154
O NPT= 781 R0=0.00010000 RMT= 1.1700 Z: 8.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -9: X=0.16438936 Y=0.54110395 Z=0.25722319
MULT= 4 ISPLIT= 8
-9: X=0.83561064 Y=0.45889605 Z=0.74277681
-9: X=0.33561064 Y=0.04110395 Z=0.24277681
-9: X=0.66438936 Y=0.95889605 Z=0.75722319
H NPT= 781 R0=0.00010000 RMT= 0.6300 Z: 1.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -10: X=0.93237881 Y=0.43889172 Z=0.30403224
MULT= 4 ISPLIT= 8
-10: X=0.06762119 Y=0.56110828 Z=0.69596776
-10: X=0.56762119 Y=0.93889172 Z=0.19596776
-10: X=0.43237881 Y=0.06110828 Z=0.80403224
H NPT= 781 R0=0.00010000 RMT= 0.6300 Z: 1.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -11: X=0.31557950 Y=0.33817070 Z=0.98607008
MULT= 4 ISPLIT= 8
-11: X=0.68442050 Y=0.66182930 Z=0.01392992
-11: X=0.18442050 Y=0.83817070 Z=0.51392992
-11: X=0.81557950 Y=0.16182930 Z=0.48607008
H NPT= 781 R0=0.00010000 RMT= 0.6300 Z: 1.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -12: X=0.61281722 Y=0.31450880 Z=0.02582728
MULT= 4 ISPLIT= 8
-12: X=0.38718278 Y=0.68549120 Z=0.97417272
-12: X=0.88718278 Y=0.81450880 Z=0.47417272
-12: X=0.11281722 Y=0.18549120 Z=0.52582728
H NPT= 781 R0=0.00010000 RMT= 0.6300 Z: 1.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
4 NUMBER OF SYMMETRY OPERATIONS
-1 0 0 0.00000000
0-1 0 0.00000000
0 0-1 0.00000000
1
1 0 0 0.00000000
0 1 0 0.00000000
0 0 1 0.00000000
2
-1 0 0 0.50000000
0 1 0 0.50000000
0 0-1 0.50000000
3
1 0 0 0.50000000
0-1 0 0.50000000
0 0 1 0.50000000
4
=================================================================
Peter Blaha Fri, 06 Mar 2015 23:26:13 -0800
There is a misunderstanding: No, don't take a "mean" energy.
Check also the corresponding charge. When it is large, it is a major
component and needs an energy parameter close to this energy.
In case.scf2 you can find under the line :EPH and :EPL
the "mean" energy of the P-s states. If they are not close to -0.73
(thats where you expand P-s), change the corresponding input value.
For P-s, :EPL and :EPH are -1.34 and -0.43, mean of -0.89, fairly close to
-0.73?
Together with the large P-s charge in :EPL it tells you, that you should
lower the P-s parameter in case.in1 to -1.34
Whether one sets in addition a second l=0 Eparameter in case.in1 depends on
the E-separation between these EPL and EPH values, corresponding charges
and the sphere radii (the larger the spheres: more probably yes).
Here you have 0.9 Ry difference, but presumably the P-s charge in the upper
E-window is
very small and you have a very small spheres. Setting the two
energies to those values might lead to ghostbands and at least at the
beginning
you
moved one E-parameter up to +6 Ry. As I said previously, you may test it at
the
end
and set the second Al-s line to 0.30 (no search), so that the actual
E-parameter will be EF+0.2
Other than P-s they are not close. Al-s has -7.24, -0.34, mean of -3.79,
case.in1 has -7.65.
O-s has -1.21, -0.30, mean is -0.75, while case.in1 has -1.46. Similarly
for Al-p and P-p.
Again, there should be l=0 E-parameters close to -7.24 and 1.21,
respectively.
In addition there should be definitely a second Al-s line at 0.30, since
there
are
"real" Al 3s states in the valence region.
I had mostly read about a supercell with one full core hole. Some of these
are certainly cells where I do not want to build a larger supercell than I
have to. Is the HALF a core hole a better choice?
Are you interested in XPS or in XAS. This is a VERY different process where
the
excited electron leave the bulk or stays whithin the bulk.
For XPS you are interested just in ONE number (Al-2p ionizationpotential)
and
Slaters transition state concept with half a core hole applies.
For XAS you want to simulate a spectrum for a system with one core hole and
an
additional e- in
the valence band. Use (at least for insulators) a full core hole.
Do I understand correctly that whether I use a HALF core-hole or a full one,
I then do minimization of the ionic positions again?
No. Electronic spectroscopy is a very fast process and the ions have no time
to
move
around.
The user-guide says "The energy cut-off specified in lstart during init lapw
(usually -6.0 Ry) defines the separation
into core- and band-states (the latter contain both, semicore and valence)."
How do I get the Al 2p state into the core?
Do I have to change the cut-off and use .lcore, or is there some way to move
just the Al 2p state into the core?
Besides an Energy (-X Ry), you can also specify a charge localization
criterium
(like 0.999), which will put all states with less charge inside sphere as
valence.
Checkout case.outputst to see how much charge each state has inside sphere:
E-up(Ry) E-dn(Ry) Occupancy q/sphere core-state
1S -3.801989 -3.785331 1.00 1.00 0.9922 F
2S -0.236724 -0.003329 1.00 0.00 0.0675 F
PS There was no "reply" button in the archive except "Reply via email". I
could not find an answer as to how to reply to a post in either the Mail
Archive FAQ, or the WIEN mail archive.
Thanks,
David
More information about the Wien
mailing list