[Wien] Problem with parallel OPTIC
Maciej Polak
maciej.polak at pwr.edu.pl
Thu Apr 21 23:44:36 CEST 2016
Dear WIEN2k Community,
I want to calculate the joint density of states but I ran into some
problems with parallel execution of x optic. I use only K-point
parallelization and run the newest 14.2 version of WIEN2k.
When I do sequential calculations, it all works fine. But for bigger
cases, and many K-points it is impossible to finish on one CPU. After I
add the -p flag to the relevant procedures, the last output I see is:
running OPTIC in parallel mode. From then, nothing happens. The
optic_X.def files are generated, and an optic.error file containing
"Error in Parallel OPTIC", nothing else. The code just stands still
after that, no activity on CPUs.
A simple minimalistic example to reproduce the error:
init_lapw -bw -vxc 5 -rkmax 7 -numk 1000 -red 2
run_lapw -p
x kgen <<< 10000
x lapw1 -p
x lapw2 -fermi -p
x optic -p
The same set of calculations, without the -p flag, would work just fine.
However, when I generate a bigger k-mesh and have a large number of
atoms it is absolutely impossible to perform the calculations on a
single core.
Regular k-point calculations (geometry optimization, bandstructures,
etc.) work perfectly.
I attached my *.struct and *.inop, but they are not the problem in this
case, since they work with sequential version as intended. This is just
a super simple FCC Si calculation just for testing.
I would really appreciate any help. I tried to read through the mailing
list, but couldn't find a similar problem.
Best regards,
Maciej Polak
Wroclaw University of Science and Technology
-------------- next part --------------
si
F LATTICE,NONEQUIV.ATOMS: 1
MODE OF CALC=RELA unit=bohr
10.200000 10.200000 10.200000 90.000000 90.000000 90.000000
ATOM 1: X=0.12500000 Y=0.12500000 Z=0.12500000
MULT= 2 ISPLIT= 2
1: X=0.87500000 Y=0.87500000 Z=0.87500000
Si NPT= 781 R0=0.00010000 RMT= 2.16 Z: 14.0
LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
48 NUMBER OF SYMMETRY OPERATIONS
-1 0 0 0.00000000
0-1 0 0.00000000
0 0-1 0.00000000
1
-1 0 0 0.00000000
0 0-1 0.00000000
0-1 0 0.00000000
2
0-1 0 0.00000000
-1 0 0 0.00000000
0 0-1 0.00000000
3
0 0-1 0.00000000
-1 0 0 0.00000000
0-1 0 0.00000000
4
0-1 0 0.00000000
0 0-1 0.00000000
-1 0 0 0.00000000
5
0 0-1 0.00000000
0-1 0 0.00000000
-1 0 0 0.00000000
6
0 0 1 0.00000000
0 1 0 0.00000000
1 0 0 0.00000000
7
0 1 0 0.00000000
0 0 1 0.00000000
1 0 0 0.00000000
8
0 0 1 0.00000000
1 0 0 0.00000000
0 1 0 0.00000000
9
0 1 0 0.00000000
1 0 0 0.00000000
0 0 1 0.00000000
10
1 0 0 0.00000000
0 0 1 0.00000000
0 1 0 0.00000000
11
1 0 0 0.00000000
0 1 0 0.00000000
0 0 1 0.00000000
12
-1 0 0 0.00000000
0 1 0 0.75000000
0 0 1 0.75000000
13
1 0 0 0.00000000
0-1 0 0.75000000
0 0-1 0.75000000
14
0-1 0 0.75000000
1 0 0 0.00000000
0 0-1 0.75000000
15
1 0 0 0.00000000
0 0-1 0.75000000
0-1 0 0.75000000
16
0 0-1 0.75000000
1 0 0 0.00000000
0-1 0 0.75000000
17
1 0 0 0.75000000
0 1 0 0.75000000
0 0-1 0.00000000
18
-1 0 0 0.75000000
0 1 0 0.00000000
0 0-1 0.75000000
19
1 0 0 0.75000000
0 0 1 0.75000000
0-1 0 0.00000000
20
-1 0 0 0.75000000
0 0 1 0.00000000
0-1 0 0.75000000
21
0 1 0 0.00000000
-1 0 0 0.75000000
0 0-1 0.75000000
22
0 0 1 0.00000000
-1 0 0 0.75000000
0-1 0 0.75000000
23
0-1 0 0.75000000
0 0-1 0.75000000
1 0 0 0.00000000
24
0 0-1 0.75000000
0-1 0 0.75000000
1 0 0 0.00000000
25
0 0 1 0.75000000
0 1 0 0.75000000
-1 0 0 0.00000000
26
0 1 0 0.75000000
0 0 1 0.75000000
-1 0 0 0.00000000
27
0 1 0 0.75000000
1 0 0 0.75000000
0 0-1 0.00000000
28
0 0 1 0.75000000
1 0 0 0.75000000
0-1 0 0.00000000
29
1 0 0 0.75000000
0 0-1 0.00000000
0 1 0 0.75000000
30
-1 0 0 0.75000000
0 0-1 0.75000000
0 1 0 0.00000000
31
1 0 0 0.75000000
0-1 0 0.00000000
0 0 1 0.75000000
32
-1 0 0 0.75000000
0-1 0 0.75000000
0 0 1 0.00000000
33
0 0 1 0.75000000
-1 0 0 0.00000000
0 1 0 0.75000000
34
0 1 0 0.00000000
0 0-1 0.75000000
-1 0 0 0.75000000
35
0 1 0 0.75000000
-1 0 0 0.00000000
0 0 1 0.75000000
36
0 0 1 0.00000000
0-1 0 0.75000000
-1 0 0 0.75000000
37
0 0-1 0.75000000
0 1 0 0.00000000
-1 0 0 0.75000000
38
0-1 0 0.75000000
0 0 1 0.00000000
-1 0 0 0.75000000
39
0 0-1 0.00000000
0 1 0 0.75000000
1 0 0 0.75000000
40
0-1 0 0.00000000
0 0 1 0.75000000
1 0 0 0.75000000
41
0 0-1 0.75000000
-1 0 0 0.75000000
0 1 0 0.00000000
42
0-1 0 0.75000000
-1 0 0 0.75000000
0 0 1 0.00000000
43
0 0-1 0.00000000
1 0 0 0.75000000
0 1 0 0.75000000
44
0-1 0 0.00000000
1 0 0 0.75000000
0 0 1 0.75000000
45
0 1 0 0.75000000
0 0-1 0.00000000
1 0 0 0.75000000
46
0 0 1 0.75000000
0-1 0 0.00000000
1 0 0 0.75000000
47
-1 0 0 0.00000000
0 0 1 0.75000000
0 1 0 0.75000000
48
-------------- next part --------------
286 1 number of k-points, first k-point
-5.0 3.0 9999 Emin, Emax for matrix elements, NBvalMAX
1 number of choices (columns in *outmat): 2: hex or tetrag. case
1 Re xx
OFF ON/OFF writes MME to unit 4
Choices:
1......Re <x><x>
2......Re <y><y>
3......Re <z><z>
4......Re <x><y>
5......Re <x><z>
6......Re <y><z>
7......Im <x><y>
8......Im <x><z>
9......Im <y><z>
More information about the Wien
mailing list