[Wien] How to get accurate GAP using BJ or mBJ methods?
JingQun
qunjing at hotmail.com
Mon Feb 29 10:38:45 CET 2016
Dear all,
I am running wien 14.2 on a machine with operating system
centos 6.5, fortran compiler ifort.
I want to calculate the electronic structures of
borates (such as BBO, KBBF, LBO, and so on)and get accurate GAP using BJ or mBJ methods. During the
calculation, I have encountered some problems. They are:
1, Take KBBF for example. The bandgap of KBBF is 8.0 eV (the
UV cutoff edge is about 155 nm). During the calculation, the unit-cell
parameters and atomic coordinates were obtained from XRD, and the RMT were set
as K (2.50), Be(1.28), B(1.19), O(1.38) F(1.56). The core electron states were
separated from the valence states by -8.0 Ry, and the Rkmax was set as 5.0. The
Irreducible Brillouin Zon was sampled at 500 k-points without shifted meshes,
and the convergent condition for SCF was set as 10E(-5). In order to get
accurate GAP as described elsewhere, a mBJ method was used. While unlike many
other successful example, the bandgap obtained is either larger or smaller than
the experimental values. That is to say, when I chose ‘Original mBJ values
(Tran,Blaha PRL102,226401)’to calculate, the GAP of KBBF is about 11.504 eV,
much larger than the experimental values (8.0 eV), while when I chose
‘Unmodified BJ potential (Becke,Johnson J.Chem.Phys 124,221101’, the result is
7.301 eV, smaller than experimental values. Can anyone kindly tell me how to
get accurate bandgap value of borates ?
PS: The KBBF.struct, KBBF.in1c, KBBF.in2c were added as
attachment.
KBBF.struct
blebleble
R LATTICE,NONEQUIV.ATOMS 5 155
R32
MODE OF CALC=RELA unit=bohr
8.364065 8.364065 35.454261 90.000000
90.000000120.000000
ATOM -1: X=0.00000000 Y=0.00000000
Z=0.00000000
MULT= 1 ISPLIT= 4
K NPT= 781
R0=.000050000 RMT= 2.50000
Z: 19.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000
0.0000000
0.0000000 1.0000000
0.0000000
0.0000000 0.0000000
1.0000000
ATOM -2: X=0.72172000 Y=0.72172000
Z=0.72172000
MULT= 2 ISPLIT= 4
-2: X=0.27828000 Y=0.27828000
Z=0.27828000
F NPT= 781
R0=.000100000 RMT= 1.56
Z: 9.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000
0.0000000
0.0000000 1.0000000
0.0000000
0.0000000 0.0000000
1.0000000
ATOM -3: X=0.80242000 Y=0.80242000
Z=0.80242000
MULT= 2 ISPLIT= 4
-3: X=0.19758000 Y=0.19758000
Z=0.19758000
Be NPT= 781
R0=.000100000 RMT= 1.28
Z: 4.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000
0.0000000
0.0000000 1.0000000
0.0000000
0.0000000 0.0000000
1.0000000
ATOM -4: X=0.50000000 Y=0.19045000
Z=0.80955000
MULT= 3 ISPLIT= 8
-4: X=0.80955000 Y=0.50000000
Z=0.19045000
-4: X=0.19045000 Y=0.80955000
Z=0.50000000
O NPT= 781
R0=.000100000 RMT= 1.38
Z: 8.00000
LOCAL ROT MATRIX: 0.0000000 0.5000000
0.8660254
0.0000000-0.8660254
0.5000000
1.0000000 0.0000000
0.0000000
ATOM -5: X=0.50000000 Y=0.50000000
Z=0.50000000
MULT= 1 ISPLIT= 4
B NPT= 781
R0=.000100000 RMT= 1.19
Z: 5.00000
LOCAL ROT MATRIX: 1.0000000 0.0000000
0.0000000
0.0000000 1.0000000
0.0000000
0.0000000 0.0000000
1.0000000
6
NUMBER OF SYMMETRY OPERATIONS
-1 0 0 0.00000000
0 0-1 0.00000000
0-1 0 0.00000000
1
0-1 0 0.00000000
-1 0 0 0.00000000
0 0-1 0.00000000
2
0 0-1 0.00000000
0-1 0 0.00000000
-1 0 0 0.00000000
3
0 1 0 0.00000000
0 0 1 0.00000000
1 0 0 0.00000000
4
0 0 1 0.00000000
1 0 0 0.00000000
0 1 0 0.00000000
5
1 0 0 0.00000000
0 1 0 0.00000000
0 0 1 0.00000000
6
KBBF.in1c
WFFIL EF=-.100583812400 (WFFIL, WFPRI, ENFIL, SUPWF)
5.00 10
4 (R-MT*K-MAX; MAX L IN WF, V-NMT
0.30
4 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES,
global APW/LAPW)
0
-2.30 0.002 CONT 1
0
0.30 0.000 CONT 1
1
-1.08 0.002 CONT 1
1
0.30 0.000 CONT 1
0.30
3 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES,
global APW/LAPW)
0
-1.90 0.002 CONT 1
0
0.30 0.000 CONT 1
1
0.30 0.000 CONT 1
0.30
2 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES,
global APW/LAPW)
0
0.30 0.000 CONT 1
0
-7.51 0.001 STOP 1
0.30
3 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES,
global APW/LAPW)
0
-1.46 0.002 CONT 1
0
0.30 0.000 CONT 1
1
0.30 0.000 CONT 1
0.30
2 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES,
global APW/LAPW)
0
0.30 0.000 CONT 1
1
0.30 0.000 CONT 1
K-VECTORS FROM UNIT:4 -11.0
1.5 54 emin / de (emax=Ef+de) / nband
KBBF.in2c
TOT (TOT,FOR,QTL,EFG,FERMI)
-14.00
52.00 0.50 0.05 1
EMIN, NE, ESEPERMIN, ESEPER0, iqtlsave
TETRA 0.000 (GAUSS,ROOT,TEMP,TETRA,ALL eval)
0 0
2 0 -3 3 4 0 4 3 -5 3
6 0 6 3 6 6
0 0
1 0 2 0 3 0 3
3 -3 3 4 0 4 3 -4 3
5 0 5 3 -5 3 6 0 6
3 -6 3 6 6 -6 6
0 0
1 0 2 0 3 0 3
3 -3 3 4 0 4 3 -4 3
5 0 5 3 -5 3 6 0 6
3 -6 3 6 6 -6 6
0 0
1 0 2 0 2 2 -2 2
3 0 3 2 -3 2 4 0 4
2 -4 2 4 4 -4 4 5 0 5
2 -5 2 5 4 -5 4 6 0 6
2 -6 2 6 4 -6 4 6 6 -6 6
0 0
2 0 -3 3 4 0 4 3 -5 3
6 0 6 3 6 6
14.00 GMAX
NOFILE
FILE/NOFILE write recprlist
2, In some papers, they said ‘The potential and charge
density in the muffin-tin (MT) spheres are expanded in spherical harmonics with
lmax = 8 and non-spherical components up to lmax = 6.’I don’t know how to set
different lmax value during the calculation. Can anyone tell me how to do ?
Thanks very much.
Yours
Qun Jing
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://zeus.theochem.tuwien.ac.at/pipermail/wien/attachments/20160229/8076766d/attachment-0001.html>
More information about the Wien
mailing list