[Wien] How to get accurate GAP using BJ or mBJ methods?

JingQun qunjing at hotmail.com
Mon Feb 29 10:38:45 CET 2016


Dear all,

I am running wien 14.2 on a machine with operating system
centos 6.5, fortran compiler ifort.

I want to calculate the electronic structures of
borates (such as BBO, KBBF, LBO, and so on)and get accurate GAP using BJ or mBJ methods. During the
calculation, I have encountered some problems. They are:

1, Take KBBF for example. The bandgap of KBBF is 8.0 eV (the
UV cutoff edge is about 155 nm).  During the calculation, the unit-cell
parameters and atomic coordinates were obtained from XRD, and the RMT were set
as K (2.50), Be(1.28), B(1.19), O(1.38) F(1.56). The core electron states were
separated from the valence states by -8.0 Ry, and the Rkmax was set as 5.0. The
Irreducible Brillouin Zon was sampled at 500 k-points without shifted meshes,
and the convergent condition for SCF was set as 10E(-5). In order to get
accurate GAP as described elsewhere, a mBJ method was used. While unlike many
other successful example, the bandgap obtained is either larger or smaller than
the experimental values. That is to say, when I chose ‘Original mBJ values
(Tran,Blaha PRL102,226401)’to calculate, the GAP of KBBF is about 11.504 eV,
much larger than the experimental values (8.0 eV), while when I chose
‘Unmodified BJ potential (Becke,Johnson J.Chem.Phys 124,221101’, the result is
7.301 eV, smaller than experimental values. Can anyone kindly tell me how to
get accurate bandgap value of borates ?

PS: The KBBF.struct, KBBF.in1c, KBBF.in2c were added as
attachment.

KBBF.struct

blebleble                                                                     


R   LATTICE,NONEQUIV.ATOMS   5  155
R32                                       


MODE OF CALC=RELA unit=bohr                                                   


  8.364065  8.364065 35.454261 90.000000
90.000000120.000000                  


ATOM  -1: X=0.00000000 Y=0.00000000
Z=0.00000000

          MULT= 1          ISPLIT= 4

K          NPT=  781 
R0=.000050000 RMT= 2.50000    
Z:  19.00000              

LOCAL ROT MATRIX:    1.0000000 0.0000000
0.0000000

                     0.0000000 1.0000000
0.0000000

                     0.0000000 0.0000000
1.0000000

ATOM  -2: X=0.72172000 Y=0.72172000
Z=0.72172000

          MULT= 2          ISPLIT= 4

      -2: X=0.27828000 Y=0.27828000
Z=0.27828000

F          NPT=  781 
R0=.000100000 RMT= 1.56       
Z:   9.00000              

LOCAL ROT MATRIX:    1.0000000 0.0000000
0.0000000

                     0.0000000 1.0000000
0.0000000

                     0.0000000 0.0000000
1.0000000

ATOM  -3: X=0.80242000 Y=0.80242000
Z=0.80242000

          MULT= 2          ISPLIT= 4

      -3: X=0.19758000 Y=0.19758000
Z=0.19758000

Be         NPT=  781 
R0=.000100000 RMT= 1.28       
Z:   4.00000              

LOCAL ROT MATRIX:    1.0000000 0.0000000
0.0000000

                     0.0000000 1.0000000
0.0000000

                     0.0000000 0.0000000
1.0000000

ATOM  -4: X=0.50000000 Y=0.19045000
Z=0.80955000

          MULT= 3          ISPLIT= 8

      -4: X=0.80955000 Y=0.50000000
Z=0.19045000

      -4: X=0.19045000 Y=0.80955000
Z=0.50000000

O          NPT=  781 
R0=.000100000 RMT= 1.38       
Z:   8.00000              

LOCAL ROT MATRIX:    0.0000000 0.5000000
0.8660254

                     0.0000000-0.8660254
0.5000000

                     1.0000000 0.0000000
0.0000000

ATOM  -5: X=0.50000000 Y=0.50000000
Z=0.50000000

          MULT= 1          ISPLIT= 4

B          NPT=  781 
R0=.000100000 RMT= 1.19       
Z:   5.00000              

LOCAL ROT MATRIX:    1.0000000 0.0000000
0.0000000

                     0.0000000 1.0000000
0.0000000

                     0.0000000 0.0000000
1.0000000

   6     
NUMBER OF SYMMETRY OPERATIONS

-1 0 0 0.00000000

 0 0-1 0.00000000

 0-1 0 0.00000000

       1

 0-1 0 0.00000000

-1 0 0 0.00000000

 0 0-1 0.00000000

       2

 0 0-1 0.00000000

 0-1 0 0.00000000

-1 0 0 0.00000000

       3

 0 1 0 0.00000000

 0 0 1 0.00000000

 1 0 0 0.00000000

       4

 0 0 1 0.00000000

 1 0 0 0.00000000

 0 1 0 0.00000000

       5

 1 0 0 0.00000000

 0 1 0 0.00000000

 0 0 1 0.00000000

      
6

KBBF.in1c

WFFIL  EF=-.100583812400   (WFFIL, WFPRI, ENFIL, SUPWF) 

  5.00       10   
4 (R-MT*K-MAX; MAX L IN WF, V-NMT

  0.30   
4  0      (GLOBAL E-PARAMETER WITH n OTHER CHOICES,
global APW/LAPW)

 0  
-2.30      0.002 CONT 1

 0   
0.30      0.000 CONT 1

 1  
-1.08      0.002 CONT 1

 1   
0.30      0.000 CONT 1

  0.30   
3  0      (GLOBAL E-PARAMETER WITH n OTHER CHOICES,
global APW/LAPW)

 0  
-1.90      0.002 CONT 1

 0   
0.30      0.000 CONT 1

 1   
0.30      0.000 CONT 1

  0.30   
2  0      (GLOBAL E-PARAMETER WITH n OTHER CHOICES,
global APW/LAPW)

 0   
0.30      0.000 CONT 1

 0  
-7.51      0.001 STOP 1

  0.30   
3  0      (GLOBAL E-PARAMETER WITH n OTHER CHOICES,
global APW/LAPW)

 0  
-1.46      0.002 CONT 1

 0   
0.30      0.000 CONT 1

 1   
0.30      0.000 CONT 1

  0.30   
2  0      (GLOBAL E-PARAMETER WITH n OTHER CHOICES,
global APW/LAPW)

 0   
0.30      0.000 CONT 1

 1   
0.30      0.000 CONT 1

K-VECTORS FROM UNIT:4  -11.0      
1.5   54   emin / de (emax=Ef+de) / nband

KBBF.in2c

TOT             (TOT,FOR,QTL,EFG,FERMI)

  -14.00  
52.00   0.50 0.05  1  
EMIN, NE, ESEPERMIN, ESEPER0, iqtlsave

TETRA    0.000      (GAUSS,ROOT,TEMP,TETRA,ALL      eval)

  0 0 
2 0 -3 3  4 0  4 3 -5 3 
6 0  6 3  6 6

  0 0 
1 0  2 0  3 0  3
3 -3 3  4 0  4 3 -4 3 
5 0  5 3 -5 3  6 0  6
3 -6 3  6 6 -6 6

  0 0 
1 0  2 0  3 0  3
3 -3 3  4 0  4 3 -4 3 
5 0  5 3 -5 3  6 0  6
3 -6 3  6 6 -6 6

  0 0 
1 0  2 0  2 2 -2 2 
3 0  3 2 -3 2  4 0  4
2 -4 2  4 4 -4 4  5 0  5
2 -5 2  5 4 -5 4  6 0  6
2 -6 2  6 4 -6 4  6 6 -6 6

  0 0 
2 0 -3 3  4 0  4 3 -5 3 
6 0  6 3  6 6

 14.00          GMAX

NOFILE       
FILE/NOFILE  write recprlist

2, In some papers, they said ‘The potential and charge
density in the muffin-tin (MT) spheres are expanded in spherical harmonics with
lmax = 8 and non-spherical components up to lmax = 6.’I don’t know how to set
different lmax value during the calculation. Can anyone tell me how to do ?

Thanks very much.

Yours

Qun Jing

  		 	   		  
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://zeus.theochem.tuwien.ac.at/pipermail/wien/attachments/20160229/8076766d/attachment-0001.html>


More information about the Wien mailing list