[Wien] [SPAM?] LSDA+U calculation with/without SOC of GdSb with U on both d and f orbitals
Hung Yu Yang
yanghw at bc.edu
Thu Oct 13 21:10:17 CEST 2016
Dear wien2k users,
I am using wien2k 14.2 version to try to reproduce the GdSb calculation in
the following paper (see FIG.5 and FIG.6):
http://journals.aps.org.proxy.bc.edu/prb/abstract/10.1103/PhysRevB.74.085108
I first did the calculation without SOC (LDA+spin-polarized+U), with the
following .indm file:
------------------ top of file: case.indm --------------------
-12. Emin cutoff energy
1 number of atoms for which density matrix is calculated
1 2 2 3 index of 1st atom, number of L’s, L1
0 0 r-index, (l,s)-index
------------------- bottom of file ------------------------
Similar changes were done in .inorb file. The result is satisfactory in
this case, as can be seen in the following link:
https://www.dropbox.com/s/fnqxvpgu3a8e3zg/GdSb_BS_woSOC_sp_d_f_dandf.pdf?dl=0
In the two panels at the bottom, the gap around EF was open (from U on d)
and the f band was pushed down, which means the effects of U on both d and
f orbitals are well-considered.
Then I tried to do the calculation with SOC (LDA+spin-polarized+U+SOC), and
the result can be seen in the following link:
https://www.dropbox.com/s/6cfbwu7yxcqxgsm/GdSb_SOC_bs.pdf?dl=0
At the bottom right panel, although I tried to use the similar setting to
put U on both d and f, the effect of U only showed up on d orbital (f
orbital is not pushed down.) When I checked the .outputorbup file, it shows
Calculation of orbital potential for spin block: up
Type of potential: LDA+U
Vorb applied to atom 1 orbit. numbers 2 3
Fully Localized Limit method
Atom 1 L= 2 U= 0.250 J= 0.000 Ry
Atom 1 L= 3 U= 0.600 J= 0.000 Ry
end of OP input
STRUCT file read
VSP read
Atom 1 L= 2 spin of potential; Lx, Ly, Lz= 0.000000 0.000000 -0.025894
Atom 1 L= 3 spin of potential; Lx, Ly, Lz= 0.000000 0.000000 0.003863
atom 1 L= 2 projection of L on M= -0.012830
atom 1 L= 3 projection of L on M= 0.158098
natom 1
No old potential found
Slater integrals F0, F2, F4 0.250 0.000 0.000 Ry
Ecorr 0.00011 Mult 1 Eldau 0.01465 Edc -0.03123 Tr(rho.V)
0.03016
:EORB: 0.00011466
Atom 1 spin up potential real part (Ry)
:VORBr 1_ 1 M= -2 0.10784 0.00000 0.00000 0.00000 -0.00757
:VORBr 1_ 1 M= -1 0.00000 0.11683 0.00000 0.00000 0.00000
:VORBr 1_ 1 M= 0 0.00000 0.00000 0.10180 0.00000 0.00000
:VORBr 1_ 1 M= 1 0.00000 0.00000 0.00000 0.11707 0.00000
:VORBr 1_ 1 M= 2 -0.00757 0.00000 0.00000 0.00000 0.11096
Potential imaginary part (Ry)
:VORBi 1_ 1 M= -2 0.00000 0.00000 0.00000 0.00000 0.00000
:VORBi 1_ 1 M= -1 0.00000 0.00000 0.00000 0.00000 0.00000
:VORBi 1_ 1 M= 0 0.00000 0.00000 0.00000 0.00000 0.00000
:VORBi 1_ 1 M= 1 0.00000 0.00000 0.00000 0.00000 0.00000
:VORBi 1_ 1 M= 2 0.00000 0.00000 0.00000 0.00000 0.00000
Slater integrals F0, F2, F4, F(6) 0.600 0.000 0.000 0.000 Ry
Ecorr 8.12337 Mult 1 Eldau 12.60579 Edc 12.95258 Tr(rho.V)
-1.99387
:EORB: 8.12337448
Atom 1 spin up potential real part (Ry)
:VORBr 1_ 1 M= -3 -0.29070 0.00000 0.00000 0.00000 0.00013
0.00000 0.00000
:VORBr 1_ 1 M= -2 0.00000 -0.28992 0.00000 0.00000 0.00000
0.00006 0.00000
:VORBr 1_ 1 M= -1 0.00000 0.00000 -0.28909 0.00000 0.00000
0.00000 0.00009
:VORBr 1_ 1 M= 0 0.00000 0.00000 0.00000 -0.28846 0.00000
0.00000 0.00000
:VORBr 1_ 1 M= 1 0.00013 0.00000 0.00000 0.00000 -0.28872
0.00000 0.00000
:VORBr 1_ 1 M= 2 0.00000 0.00006 0.00000 0.00000 0.00000
-0.28999 0.00000
:VORBr 1_ 1 M= 3 0.00000 0.00000 0.00009 0.00000 0.00000
0.00000 -0.29155
Potential imaginary part (Ry)
:VORBi 1_ 1 M= -3 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000
:VORBi 1_ 1 M= -2 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000
:VORBi 1_ 1 M= -1 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000
:VORBi 1_ 1 M= 0 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000
:VORBi 1_ 1 M= 1 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000
:VORBi 1_ 1 M= 2 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000
:VORBi 1_ 1 M= 3 0.00000 0.00000 0.00000 0.00000 0.00000
0.00000 0.00000
This seems to mean that the program actually read both U values on the two
orbital, but somehow it did nothing to the f orbital in the band structure
when SOC is included.
The way I did the calculation is that I first do a LDA+SOC+spin-polarized
scf calculation; then I made the .inorb and .indm files, cp .indm .indmc,
initso_lapw again, and run the LDA+SOC+spin-polarized+U scf calculation. I
tried to search the mailing list but not much was done on the case in which
one has U on 2 orbitals and includes SOC as well. I'm not sure this is a
bug or I am actually doing something wrong, could anyone help me with this
issue? Any information, comment or suggestion will be very helpful and
appreciated.
Yours sincerely,
Hung-Yu
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://zeus.theochem.tuwien.ac.at/pipermail/wien/attachments/20161013/ec38e5ec/attachment.html>
More information about the Wien
mailing list