[Wien] Fwd: bug in relativistic decomposition in QTL?

Jindrich Kolorenc kolorenc at fzu.cz
Mon Jun 19 11:06:46 CEST 2017


Dear Wien2k developers,

I am trying to decompose the U 5f density of states in UGa2 to j=5/2 and 
j=7/2 components and it appears that I am hitting a bug in the QTL 
program. In the non-magnetic + SO calculation, the 5f DOS has two peaks, 
the lower should be mostly j=5/2, the upper j=7/2. An earlier 
calculation can be found in Fig.3 of Divis et al., 
https://doi.org/10.1103/PhysRevB.53.9658

The figure

      http://www.fzu.cz/~kolorenc/wien2k_UGa2_bug/UGa2_f52_f72.png

shows what I get with Wien2k, version 16.1 (and 14.2 gives the same). 
One can see that

1) it differs from the results of Divis at al.
2) the result depends on the direction of magnetization specified in 
case.inso (001 or 100), which I believe it really should not when there 
is no magnetization at all
3) the result for the direction 100 is clearly incorrect (the lower peak 
certainly is not dominantly 7/2)
4) QTL gives long tail of the 5f DOS up to high energies whereas the 5f 
DOS calculated after "lapw2 -so -qtl" does not have this tail.

Given the above, I think the problem is somewhere in interpreting the 
lattice symmetry in QTL (here P6/mmm, group 191). My case.struct is 
attached, the other input files were essentially straight from init_lapw 
and initso_lapw. I use symmetrization in QTL just to be on the safe 
side. I have also tried to run the calculations with the "ferromagnetic" 
case.struct generated by initso_lapw (it reduces the number of symmetry 
operations in the 100 case) but there seems to be no difference.

Any help leading toward a fix (or a workaround) would be really appreciated.

Best regards,
Jindrich Kolorenc




-------------- next part --------------
UGa2, AlB2 type, U in Wyckoff 1a, Ga in Wyckoff 2d, a=4.213 A, c=4.02 A        
H   LATTICE,NONEQUIV.ATOMS:  2 191 P6/mmm                                      
MODE OF CALC=RELA                                                              
  7.961416  7.961416  7.596698 90.000000 90.000000120.000000                   
ATOM  -1: X=0.66666667 Y=0.33333333 Z=0.50000000
          MULT= 2          ISPLIT= 4
      -1: X=0.33333333 Y=0.66666667 Z=0.50000000
Ga1        NPT=  781  R0=0.00003000 RMT=   2.25         31.0                   
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
                     0.0000000 1.0000000 0.0000000
                     0.0000000 0.0000000 1.0000000
ATOM  -2: X=0.00000000 Y=0.00000000 Z=0.00000000
          MULT= 1          ISPLIT= 4
U 1        NPT=  781  R0=0.00000300 RMT=   2.80000      92.0                   
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
                     0.0000000 1.0000000 0.0000000
                     0.0000000 0.0000000 1.0000000
  24      NUMBER OF SYMMETRY OPERATIONS
 1 0 0 0.00000000
 0 1 0 0.00000000
 0 0 1 0.00000000
       1
 0-1 0 0.00000000
 1-1 0 0.00000000
 0 0 1 0.00000000
       2
-1 1 0 0.00000000
-1 0 0 0.00000000
 0 0 1 0.00000000
       3
-1 0 0 0.00000000
 0-1 0 0.00000000
 0 0 1 0.00000000
       4
 0 1 0 0.00000000
-1 1 0 0.00000000
 0 0 1 0.00000000
       5
 1-1 0 0.00000000
 1 0 0 0.00000000
 0 0 1 0.00000000
       6
 0 1 0 0.00000000
 1 0 0 0.00000000
 0 0-1 0.00000000
       7
 1-1 0 0.00000000
 0-1 0 0.00000000
 0 0-1 0.00000000
       8
-1 0 0 0.00000000
-1 1 0 0.00000000
 0 0-1 0.00000000
       9
 0-1 0 0.00000000
-1 0 0 0.00000000
 0 0-1 0.00000000
      10
-1 1 0 0.00000000
 0 1 0 0.00000000
 0 0-1 0.00000000
      11
 1 0 0 0.00000000
 1-1 0 0.00000000
 0 0-1 0.00000000
      12
-1 0 0 0.00000000
 0-1 0 0.00000000
 0 0-1 0.00000000
      13
 0 1 0 0.00000000
-1 1 0 0.00000000
 0 0-1 0.00000000
      14
 1-1 0 0.00000000
 1 0 0 0.00000000
 0 0-1 0.00000000
      15
 1 0 0 0.00000000
 0 1 0 0.00000000
 0 0-1 0.00000000
      16
 0-1 0 0.00000000
 1-1 0 0.00000000
 0 0-1 0.00000000
      17
-1 1 0 0.00000000
-1 0 0 0.00000000
 0 0-1 0.00000000
      18
 0-1 0 0.00000000
-1 0 0 0.00000000
 0 0 1 0.00000000
      19
-1 1 0 0.00000000
 0 1 0 0.00000000
 0 0 1 0.00000000
      20
 1 0 0 0.00000000
 1-1 0 0.00000000
 0 0 1 0.00000000
      21
 0 1 0 0.00000000
 1 0 0 0.00000000
 0 0 1 0.00000000
      22
 1-1 0 0.00000000
 0-1 0 0.00000000
 0 0 1 0.00000000
      23
-1 0 0 0.00000000
-1 1 0 0.00000000
 0 0 1 0.00000000
      24


More information about the Wien mailing list