[Wien] negative eps-1 and very large value of eps-2
Fecher, Gerhard
fecher at uni-mainz.de
Fri Oct 27 08:25:46 CEST 2017
If your case is spinpolarised why don't you run
lapw1 -dn
before running lapwso ?
Ciao
Gerhard
DEEP THOUGHT in D. Adams; Hitchhikers Guide to the Galaxy:
"I think the problem, to be quite honest with you,
is that you have never actually known what the question is."
====================================
Dr. Gerhard H. Fecher
Institut of Inorganic and Analytical Chemistry
Johannes Gutenberg - University
55099 Mainz
and
Max Planck Institute for Chemical Physics of Solids
01187 Dresden
________________________________________
Von: Wien [wien-bounces at zeus.theochem.tuwien.ac.at] im Auftrag von Dr. K. C. Bhamu [kcbhamu85 at gmail.com]
Gesendet: Donnerstag, 26. Oktober 2017 22:26
An: A Mailing list for WIEN2k users
Betreff: Re: [Wien] negative eps-1 and very large value of eps-2
Dear Prof Peter and Gavin,
I have followed all of your advice (mentioned at the end of this email) but still, I am getting negative eps-1 and very high value of eps-2.
[Wien2k_17.1 with joint.f provided by you in the list]
[case is -sp+-so for PbCrO3]
If I do not add plasma frequency and keep TETRA 0,000 then eps looks better than other situations (see TEST1)
my case.inkram is (I did many test with every possible combination but all eps looks wrong, some test are kept below this standard procedure):
after plasma frequency
0.1 Gamma: broadening of interband spectrum
0.0 energy shift (scissors operator)
1 add intraband contributions? yes/no: 1/0
1.57 1.57 1.13 plasma frequencies (from joint, opt 6) >>> my plasma frequency was 2.4745 2.4745 1.2914
0.20 0.20 0.20 Gammas for Drude terms
the process that I followed
x lapw1 -up
x lapwso -up
changed TERTA to 101.0
x lapw2 -so -fermi -up
x optic -so -up
x joint -up (switch 6)
x joint -up (switch 4)
x kram -up (with case.inkram file with plasma frequency as mentioned above)
What I am getting is:
case.epsilonup
# Lorentzian broadening with gamma= 0.100000 [eV]
# Im(epsilon) shifted by 0.0000 [eV]
# Intraband contributions added: w_p= 1.570 1.570 1.130
# Gamma= 0.200 0.200 0.200
# Energy [eV] Re_eps_xx Im_eps_xx Re_eps_yy Im_eps_yy Re_eps_zz Im_eps_zz
#
0.013610 -0.297855E+02 0.905814E+03 -0.297855E+02 0.905814E+03 -0.775418E+01 0.469823E+03
0.040820 -0.276873E+02 0.295094E+03 -0.276873E+02 0.295094E+03 -0.664116E+01 0.153542E+03
0.068030 -0.238934E+02 0.168513E+03 -0.238934E+02 0.168513E+03 -0.462410E+01 0.880893E+02
0.095240 -0.190432E+02 0.112609E+03 -0.190432E+02 0.112609E+03 -0.203751E+01 0.592887E+02
0.122450 -0.138133E+02 0.814450E+02 -0.138133E+02 0.814450E+02 0.758660E+00 0.433579E+02
0.149660 -0.876210E+01 0.622707E+02 -0.876210E+01 0.622707E+02 0.345702E+01 0.337053E+02
0.176870 -0.424593E+01 0.499117E+02 -0.424593E+01 0.499117E+02 0.584609E+01 0.276574E+02
0.204090 -0.412285E+00 0.417489E+02 -0.412285E+00 0.417489E+02 0.781626E+01 0.238525E+0
---------------------------------
TEST1
If I do not add plasma frequency and keep TETRA 0.000
#
# Lorentzian broadening with gamma= 0.100000 [eV]
# Im(epsilon) shifted by 0.0000 [eV]
# No intraband contributions added
#
# Energy [eV] Re_eps_xx Im_eps_xx Re_eps_yy Im_eps_yy Re_eps_zz Im_eps_zz
#
0.013610 0.321978E+02 0.400912E+01 0.321978E+02 0.400912E+01 0.232428E+02 0.231571E+01
0.040820 0.323052E+02 0.479933E+01 0.323052E+02 0.479933E+01 0.233240E+02 0.272413E+01
0.068030 0.324808E+02 0.583550E+01 0.324808E+02 0.583550E+01 0.234741E+02 0.325463E+01
0.095240 0.326330E+02 0.717860E+01 0.326330E+02 0.717860E+01 0.236625E+02 0.394668E+01
0.122450 0.326095E+02 0.884637E+01 0.326095E+02 0.884637E+01 0.238294E+02 0.483695E+01
0.149660 0.322364E+02 0.107563E+02 0.322364E+02 0.107563E+02 0.238822E+02 0.593504E+01
0.176870 0.314076E+02 0.127254E+02 0.314076E+02 0.127254E+02 0.237169E+02 0.719449E+01
TEST2
No change in plasma frequency with TETRA 0.000:
# Lorentzian broadening with gamma= 0.100000 [eV]
# Im(epsilon) shifted by 0.0000 [eV]
# Intraband contributions added: w_p= 2.077 2.077 1.049
# Gamma= 0.200 0.200 0.200
# Energy [eV] Re_eps_xx Im_eps_xx Re_eps_yy Im_eps_yy Re_eps_zz Im_eps_zz
#
0.013610 -0.495117E+02 0.158160E+04 -0.495117E+02 0.158160E+04 0.768334E+01 0.405516E+03
0.040820 -0.455569E+02 0.512565E+03 -0.455569E+02 0.512565E+03 0.875341E+01 0.132770E+03
0.068030 -0.384394E+02 0.290599E+03 -0.384394E+02 0.290599E+03 0.106857E+02 0.764176E+02
0.095240 -0.294106E+02 0.192417E+03 -0.294106E+02 0.192417E+03 0.131457E+02 0.517761E+02
0.122450 -0.197675E+02 0.137640E+03 -0.197675E+02 0.137640E+03 0.157707E+02 0.383458E+02
TEST3
without plasma frequency and TETRA 0.000
x_lapw lapw1 -p -up
x_lapw lapwso -up -p
x_lapw lapw2 -p -fermi -up -so
x_lapw optic -so -up -p
x_lapw joint -up -p
x kram -up
# Lorentzian broadening with gamma= 0.100000 [eV]
# Im(epsilon) shifted by 0.0000 [eV]
# No intraband contributions added
#
# Energy [eV] Re_eps_xx Im_eps_xx Re_eps_yy Im_eps_yy Re_eps_zz Im_eps_zz
#
0.013610 0.321978E+02 0.400912E+01 0.321978E+02 0.400912E+01 0.232428E+02 0.231571E+01
0.040820 0.323052E+02 0.479933E+01 0.323052E+02 0.479933E+01 0.233240E+02 0.272413E+01
0.068030 0.324808E+02 0.583550E+01 0.324808E+02 0.583550E+01 0.234741E+02 0.325463E+01
0.095240 0.326330E+02 0.717860E+01 0.326330E+02 0.717860E+01 0.236625E+02 0.394668E+01
0.122450 0.326095E+02 0.884637E+01 0.326095E+02 0.884637E+01 0.238294E+02 0.483695E+01
0.149660 0.322364E+02 0.107563E+02 0.322364E+02 0.107563E+02 0.238822E+02 0.593504E+01
0.176870 0.314076E+02 0.127254E+02 0.314076E+02 0.127254E+02 0.237169E+02 0.719449E+01
0.204090 0.301308E+02 0.145466E+02 0.301308E+02 0.145466E+02 0.232633E+02 0.850953E+01
0.231300 0.285092E+02 0.160443E+02 0.285092E+02 0.160443E+02 0.225213E+02 0.974673E+01
0.258510 0.267187E+02 0.171125E+02 0.267187E+02 0.171125E+02 0.215646E+02 0.107983E+02
TEST4
. without plasma frequency and TETRA 101.0
[priolkar_gu at k2 PbFeO3_fm]$ more PbFeO3_fm.epsilonup
#
# Lorentzian broadening with gamma= 0.100000 [eV]
# Im(epsilon) shifted by 0.0000 [eV]
# No intraband contributions added
#
# Energy [eV] Re_eps_xx Im_eps_xx Re_eps_yy Im_eps_yy Re_eps_zz Im_eps_zz
#
0.013610 0.315668E+02 0.392004E+01 0.315668E+02 0.392004E+01 0.228376E+02 0.227705E+01
0.040820 0.316688E+02 0.469308E+01 0.316688E+02 0.469308E+01 0.229141E+02 0.268151E+01
0.068030 0.318342E+02 0.570477E+01 0.318342E+02 0.570477E+01 0.230543E+02 0.320595E+01
0.095240 0.319743E+02 0.701177E+01 0.319743E+02 0.701177E+01 0.232272E+02 0.388695E+01
0.122450 0.319444E+02 0.862923E+01 0.319444E+02 0.862923E+01 0.233750E+02 0.475745E+01
0.149660 0.315798E+02 0.104791E+02 0.315798E+02 0.104791E+02 0.234094E+02 0.582463E+01
0.176870 0.307775E+02 0.123886E+02 0.307775E+02 0.123886E+02 0.232321E+02 0.704260E+01
0.204090 0.295409E+02 0.141582E+02 0.295409E+02 0.141582E+02 0.227768E+02 0.830878E+01
TEST 5
With plasma frequency and TETRA 101
#
# Lorentzian broadening with gamma= 0.100000 [eV]
# Im(epsilon) shifted by 0.0000 [eV]
# Intraband contributions added: w_p= 1.380 1.380 1.070
# Gamma= 0.200 0.200 0.200
# Energy [eV] Re_eps_xx Im_eps_xx Re_eps_yy Im_eps_yy Re_eps_zz Im_eps_zz
#
0.013610 -0.158237E+02 0.700328E+03 -0.158237E+02 0.700328E+03 -0.565296E+01 0.420948E+03
0.040820 -0.140372E+02 0.228632E+03 -0.140372E+02 0.228632E+03 -0.456375E+01 0.137311E+03
0.068030 -0.108385E+02 0.131157E+03 -0.108385E+02 0.131157E+03 -0.259993E+01 0.786264E+02
0.095240 -0.683505E+01 0.885098E+02 -0.683505E+01 0.885098E+02 -0.104424E+00 0.528825E+02
0.122450 -0.268481E+01 0.651898E+02 -0.268481E+01 0.651898E+02 0.255632E+01 0.387609E+02
Please let me know what additional info I can provide.
On Sun, Oct 22, 2017 at 5:35 PM, Dr. K. C. Bhamu <kcbhamu85 at gmail.com<mailto:kcbhamu85 at gmail.com>> wrote:
Dear Prof Peter and Gavin,
Following your advice and suggestions mentioned in the various threads on the list, I have calculated the epsilon. I am getting negative eps-2. I used TETRA 101.0 in case.in2/c as adviced by you in my previous query and on the below thread:
https://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/msg14472.html
It will not matter too much, but in principle for metals and half-metals 101 is more "save", because with the Blöchl-correction "negative occupation numbers" could occur, leading to a "negative eps-2".
What I am getting is :
#
# Lorentzian broadening with gamma= 0.100000 [eV]
# Im(epsilon) shifted by 0.0000 [eV]
# Intraband contributions added: w_p= 1.510 1.510 1.150
# Gamma= 0.200 0.200 0.200
# Energy [eV] Re_eps_xx Im_eps_xx Re_eps_yy Im_eps_yy Re_eps_zz Im_eps_zz
#
0.013610 -0.201480E+02 0.838490E+03 -0.201480E+02 0.838490E+03 -0.199087E+02 0.484367E+03
0.040820 -0.180346E+02 0.273691E+03 -0.180346E+02 0.273691E+03 -0.187122E+02 0.156363E+03
0.068030 -0.142530E+02 0.156877E+03 -0.142530E+02 0.156877E+03 -0.165536E+02 0.880908E+02
0.095240 -0.949469E+01 0.105584E+03 -0.949469E+01 0.105584E+03 -0.137958E+02 0.577159E+02
0.122450 -0.443380E+01 0.772580E+02 -0.443380E+01 0.772580E+02 -0.107979E+02 0.405795E+02
0.149660 0.445026E+00 0.600647E+02 0.445026E+00 0.600647E+02 -0.783146E+01 0.298442E+02
0.176870 0.486222E+01 0.492551E+02 0.486222E+01 0.492551E+02 -0.506177E+01 0.227657E+02
0.204090 0.866457E+01 0.424997E+02 0.866457E+01 0.424997E+02 -0.256891E+01 0.179847E+02
Could you please tell me why I am getting negative eps-2?
My system is half metal (with -sp calculation) and I am doing -sp+-so calculations.
I used new joint.f as provided by Prof. Peter on Wien2k_17,1.
Regards
Bhamu
More information about the Wien
mailing list