[Wien] O2 in triplet state?

chin Sabsu chinsabsu at yahoo.in
Tue Apr 24 08:09:30 CEST 2018


Thanks Sir for the detailed reply,

Let me do a set of calculation according to your suggestions.
Get back to you soon with results.

Regards
Chin S.
 

    On Tuesday, 24 April, 2018, 11:22:55 AM IST, Peter Blaha <pblaha at theochem.tuwien.ac.at> wrote:  
 
 I do not find much sense in the data you sent ???

When you want to calculate the O2 binding energies, the  RMTs and RKmax 
values of O and O2 need to be IDENTICAL. And yes, break a bit the 
symmetry (use slightly different a,b,c) to get the lowest energy for 
atoms according to Hunds rule.
---------------------------------------------

If you want to calculate cohesive/formation energies, you must use 
identical RMTs and "equivalent RKmax".

So for a Me_xO_y compound, you would first optimize the structure. 
Optimization in genergal involves lattice parameter (at least voluem) 
AND internal positions (forces).
Then you need to calculate the O2 energy and the Me (typical this is the 
metallic phase of this element, like bcc Fe or fcc Al,...).

To do so, you need to use a small RMT for O2 because of the samll bond 
length. Optimize the O2-distance eg. with 1 k-point and RMT 1.2 and 
RKMAX 5.5.

Then repeat your Me-O compound (in the relaxed minimum structure) with 
this same O-RMT (1.2) and also RKmax=5.5 (but a good k-mesh).

Finally do the Me phase (with the same Me-RMT as in your compound) and a 
RKmax= 5.5 / 1.2 * RMT(Me) !!!!!

Form the energy difference to find the cohesive energy.

Now repeat the O2, MeO and Me calculations, where you increase RKmax 
from 5.5 to eg. 6.0. Form again the difference. If it is stable, you are 
done, if not, increase RKMax again (6.6 or 7, depends also on your Me 
and compound) until you get a stable cohesive energy.

PS: When increasing RKmax, check the forces on the atoms if they remain 
small (usually they do unless you started much too small).




Am 23.04.2018 um 12:14 schrieb chin Sabsu:
> Dear Sir,
> I am thankful for the confirmation of the state of O2 molecule.
> 
> I am tried to reproduce some results for oxygen deficient system but I 
> see from my data that my system is not stable.
> 
> I started from the given lattice parameters, exact functionals,(GGA, as 
> suggested in the paper) rmt k-mesh etc.
> 
> The authors did not mention anything about how they have calculated the 
> formation energy and atomization energy. In my previous post your reply 
> with some notes, I followed the same data to simulate ground state 
> energy of O2 and O but still am not getting the reasonable results.
> 
> As I used data for O2 from FAQ and also tried according to the 
> information given in the literature paper.
> 
> I see there should not be any issue in calculating the O2 energy.
> 
> 
> My doubt is somewhere in the calculation of O (-sp) with below data:
> 
> 
> 
> Title
> F   LATTICE,NONEQUIV.ATOMS:  1
> MODE OF CALC=RELA unit=bohr
>   28.345900 28.345900 28.345900 90.000000 90.000000 90.000000
> ATOM   1: X=0.00000000 Y=0.00000000 Z=0.00000000
>            MULT= 1          ISPLIT= 2
> O          NPT=  781  R0=0.00010000 RMT= 1.65000     Z:  8.000
> LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
>                       0.0000000 1.0000000 0.0000000
>                       0.0000000 0.0000000 1.0000000
>    48      NUMBER OF SYMMETRY OPERATIONS
> 
> 
> 
> and
> O
> He 3
> 2,-1,1.0  N
> 2,-1,1.0  N
> 2, 1,1.0  N
> 2, 1,1.0  N
> 2,-2,2.0  N
> 2,-2,0.0  N
> ****
> ****         END of input (instgen_lapw)
> 
> 
> below are data from O2 and O-atom with GGA
> 
> O_atom_rmt_1.75_rkmax_7     -149.86322972
> O_atom_rmt_1.1_rmkax_5.5     -150.0869798
> O2_mol_bondlength_1.21_rkmax_5.5     -300.1077091
> [O2_mol_1.21]\2     -150.05385455
> O3_mol_1.21     -450.16156365
> O2_mol_bondlength_1.219_rkmax_4.6     -299.95534741
> [O2_mol_1.219]\2     -149.977673705
> O3_mol_1.219     -449.933021115
> 
> 
> 
> In his previous post in response of my query, Prof. Alay advice about 
> calculating the ground state energy of O-atom by considering O atom cell 
> as orthorhombic to avoid any issue occurring from the occupancy of 
> P-states of O-atom. His statement is quoted below:
> 
> 
> "Computing the atomic energies of atoms like N and P in an FCC cell is 
> ok, however for O atom the high symmetry of the FCC cell results in 1/3  
> occupancies (for the 4th p electron of O) in the spin down case. Only using
> 
> a lower symmetry cell (orthorhombic) for O atom eliminates this issue."
> 
> 
> Could you please advise me whether my above data looks good or not.
> 
> If I have to follow the suggestion advanced by Prof. Alay, then how to 
> make an Orthorhombic cell for O-atom?
> 
> I have done three calculations for three materials but I am not getting 
> the atomization and formation energy of O2 while the author reported 
> similar statements in his papers.
> 
> 
> Please help me to simulate the ground state energy of O2 and O taking 
> care of occupancy of P orbitals.
> 
> Please let me know what additional information I can provide.
> 
> 
> thank you very much for a big help.
> 
> Chin S.
> 
> 
> 
> 
> On Monday, 23 April, 2018, 10:32:22 AM IST, Peter Blaha 
> <pblaha at theochem.tuwien.ac.at> wrote:
> 
> 
> This is the configuration for a spin-polarized O atom.
> 
> And yes, this starting configuration will lead to the triplet state of
> O2 (when you perform spin-polarized calculations.)
> 
> Am 22.04.2018 um 08:16 schrieb chin Sabsu:
>  > Dear Users,
>  >
>  >
>  > Could you please advice me whether below *.inst form O2 in triplet
>  > state? three e- in dn and one e- in up state?
>  >
>  >
>  > O
>  > He 3
>  > 2,-1,1.0  N
>  > 2,-1,1.0  N
>  > 2, 1,1.0  N
>  > 2, 1,1.0  N
>  > 2,-2,2.0  N
>  > 2,-2,0.0  N
>  > ****
>  > ****         END of input (instgen_lapw)
>  >
>  >
>  > Thanks and best regards,
>  >
>  > Chin S.
> 
>  >
>  >
>  > _______________________________________________
>  > Wien mailing list
>  > Wien at zeus.theochem.tuwien.ac.at <mailto:Wien at zeus.theochem.tuwien.ac.at>
>  > http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
>  > SEARCH the MAILING-LIST at: 
> http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
>  >
> 
> -- 
> --------------------------------------------------------------------------
> Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
> Phone: +43-1-58801-165300            FAX: +43-1-58801-165982
> Email: blaha at theochem.tuwien.ac.at <mailto:blaha at theochem.tuwien.ac.at>    WIEN2k: http://www.wien2k.at
> WWW:
> http://www.imc.tuwien.ac.at/tc_blaha------------------------------------------------------------------------- 
> 
> 
> _______________________________________________
> Wien mailing list
> Wien at zeus.theochem.tuwien.ac.at <mailto:Wien at zeus.theochem.tuwien.ac.at>
> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
> SEARCH the MAILING-LIST at: 
> http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
> 
> 
> 
> _______________________________________________
> Wien mailing list
> Wien at zeus.theochem.tuwien.ac.at
> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
> SEARCH the MAILING-LIST at:  http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
> 

-- 
--------------------------------------------------------------------------
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-165300            FAX: +43-1-58801-165982
Email: blaha at theochem.tuwien.ac.at    WIEN2k: http://www.wien2k.at
WWW: 
http://www.imc.tuwien.ac.at/tc_blaha------------------------------------------------------------------------- 

_______________________________________________
Wien mailing list
Wien at zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at:  http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
  
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://zeus.theochem.tuwien.ac.at/pipermail/wien/attachments/20180424/a7446ff2/attachment.html>


More information about the Wien mailing list