[Wien] problems with convergence of SCF for AFM HoPtBi
Kefeng wang
wangkf80 at gmail.com
Mon Nov 5 15:53:28 CET 2018
Dear Professor Laurence Marks,
Thanks a lot for your great suggestions. I use runsp to perform the
calculations. In additon, could you kindly tell me where I can get the
information for HDLO?
Moments for spin-up Ho for the last 20 cycles are as follows:
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.77299
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.76265
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.75577
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.75164
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.75338
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.75128
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.75945
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.75596
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.75285
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.75474
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.75939
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.75724
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.75283
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.74206
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.74114
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.74064
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.74125
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.74089
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.74351
:MMI003: MAGNETIC MOMENT IN SPHERE 3 = 3.74294
What can we get from that? I am confused. Due to the limit of the size
of mail, I will show the change of Fermi energy in the next mail.
Best,
Wang
On Wed, Oct 31, 2018 at 4:35 PM Kefeng wang <wangkf80 at gmail.com> wrote:
> Dear all,
>
> I am using wien17.1 to perform the DFT calculations for HoPtBi. For the
> Non-magnetic case, the convergence for the SCF calculation has been
> achieved using 8000 k points while for the AFM case, it is not convergent
> at all using 4096 k points after 100 iterations. The charge and energy keep
> fluctuating. However, for GdPtBi with the same lattice structure and AFM
> order, the corresponding calculations are convergent. I felt very
> confused. Thanks a lot for your help!
>
>
> The struct file for HoPtBi is shown below:
>
> R LATTICE,NONEQUIV.ATOMS: 6 160 R3m
> MODE OF CALC=RELA unit=bohr
> 8.860595 8.860595 43.407874 90.000000 90.000000120.000000
> ATOM -1: X=0.87500000 Y=0.87500000 Z=0.87500000
> MULT= 1 ISPLIT= 4
> Pt1 NPT= 781 R0=.000005000 RMT= 2.50000 Z: 78.
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> ATOM -2: X=0.37500000 Y=0.37500000 Z=0.37500000
> MULT= 1 ISPLIT= 4
> Pt2 NPT= 781 R0=.000005000 RMT= 2.50000 Z: 78.
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> ATOM -3: X=0.00000000 Y=0.00000000 Z=0.00000000
> MULT= 1 ISPLIT= 4
> Ho1 NPT= 781 R0=.000010000 RMT= 2.50000 Z: 67.
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> ATOM -4: X=0.50000000 Y=0.50000000 Z=0.50000000
> MULT= 1 ISPLIT= 4
> Ho2 NPT= 781 R0=.000010000 RMT= 2.50000 Z: 67.
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0. 0.0000000
> 0.0000000 1.0000000
> ATOM -5: X=0.75000000 Y=0.75000000 Z=0.75000000
> MULT= 1 ISPLIT= 4
> Bi1 NPT= 781 R0=.000005000 RMT= 2.50000 Z: 83.
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> ATOM -6: X=0.25000000 Y=0.25000000 Z=0.25000000
> MULT= 1 ISPLIT= 4
> Bi2 NPT= 781 R0=.000005000 RMT= 2.50000 Z: 83.
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> 6 NUMBER OF SYMMETRY OPERATIONS
> 1 0 0 0.00000000
> 0 1 0 0.00000000
> 0 0 1 0.00000000
> 1
> 0 0 1 0.00000000
> 1 0 0 0.00000000
> 0 1 0 0.00000000
> 2
> 0 1 0 0.00000000
> 0 0 1 0.00000000
> 1 0 0 0.00000000
> 3
> 0 1 0 0.00000000
> 1 0 0 0.00000000
> 0 0 1 0.00000000
> 4
> 1 0 0 0.00000000
> 0 0 1 0.00000000
> 0 1 0 0.00000000
> 5
> 0 0 1 0.00000000
> 0 1 0 0.00000000
> 1 0 0 0.00000000
> 6
>
> Best,
> Wang
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://zeus.theochem.tuwien.ac.at/pipermail/wien/attachments/20181105/96b93673/attachment.html>
More information about the Wien
mailing list