[Wien] Irrep output file
Md. Fhokrul Islam
fislam at hotmail.com
Sat Jun 20 21:37:12 CEST 2020
Dear users,
I am trying to extract irreducible representation of eigenvalues. I have obtained the case.outputirso and case.irrepso files. But I am not sure if I understood these files correctly. The Ci point group has two irreducible representations as listed in the file but many of the eigenstates are labelled by "??". Am I doing anything wrong? The bands 105 -108 are four-fold degenerate with irrep of the double group G2+, G2+,G2-,G2-, respectively, right? Also, can anyone please clarify what are the complex numbers under operators E and I?
Case. outputirso:
The point group is Ci
2 symmetry operations in 2 classes
Table 6 on page 32 in Koster et al [7]
Table 11.4 on page 138 in Altmann et al [8]
E I
G1+ A1g 1 1
G1- A1u 1 -1
--------------------
G2+ A1/2g 1 1
G2- A1/2u 1 -1
class, symmetry ops, exp(-i*k*taui)
E 2 (+1.00 0.00i)
I 1 (+1.00 0.00i)
bnd ndg eigval E I
1 2 -4.675588 1.99+0.00i -1.99-0.00i ??
3 2 -4.675572 1.99-0.00i 1.99-0.00i ??
5 2 -4.674606 1.98-0.00i -1.98+0.00i ??
...
...
97 4 -4.261267 3.97+0.00i -0.00-0.00i ??
101 4 -4.261167 3.99-0.00i 0.01+0.00i ??
105 4 -4.260795 4.00-0.00i 0.00+0.00i =G2+ + G2+ + G2- + G2-
109 4 -4.259344 3.99-0.00i 0.00+0.00i ??
113 4 -4.258747 4.00+0.00i 0.00-0.00i =G2+ + G2+ + G2- + G2-
117 4 -4.258715 4.00-0.00i 0.00+0.00i =G2+ + G2+ + G2- + G2-
121 4 -2.333313 3.90-0.00i -0.01-0.00i ??
125 4 -2.333098 4.00+0.00i -0.00-0.00i =G2+ + G2+ + G2- + G2-
129 4 -2.332321 3.93+0.00i -0.02+0.00i ??
The corresponding bands in the case.irrepso file:
....
104 4 -4.261165 0 0 0 0 0 0 0 0
105 4 -4.260795 2 1 2 1 -2 1 -2 1
106 4 -4.260795 2 1 2 1 -2 1 -2 1
107 4 -4.260791 2 1 2 1 -2 1 -2 1
108 4 -4.260791 2 1 2 1 -2 1 -2 1
109 4 -4.259344 0 0 0 0 0 0 0 0
110 4 -4.259344 0 0 0 0 0 0 0 0
....
What are the numbers in column 4-7?
Thanks,
Fhokrul
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://zeus.theochem.tuwien.ac.at/pipermail/wien/attachments/20200620/96632727/attachment.html>
More information about the Wien
mailing list