[Wien] QTL quantization axis for Y_lm orbitals

Peter Blaha peter.blaha at tuwien.ac.at
Tue Jan 17 22:04:06 CET 2023


> I tried x lapw2 -alm (instead of x lapw2 -band -qtl). For me this works 
> if I set TEMP in case.in2 (with TETRA and GAUSS I am getting an error 
> when running x lapw2 -alm, but it might be some problem with my WIEN2k 

Obviously, when you do not have a k-mesh on a tetrahedral mesh, you must 
also use   x lapw2 -band -alm

> compilation on iMac - I will soon recompile on a new Linux machine.)
> 
> Anyway, this produces case.almblm file. I paste the beginning of the 
> file below (this is some simple test Ag bulk calculation).
> 
> Is there some documentation of this case.almblm file? To me it seems the 
> first column is l and the second column is m. The third column seems to 
> be just the index.
> 
> Then there are 10 columns, grouped in pairs (so 5 pairs in total).
> Are those real and imaginary coefficients of the wavefunctions? I would 
> expect one complex number per orbital per eigenvalue per k-point, why is 
> there 5 of them?
> 
> I understand that it goes beyond the routine use of the lapw2, but 
> perhaps you have simple answers...
> 
> I there a way to limit the case.almblm to inlcude only s,p,d, and f 
> orbitals?
> 
> Best,
> Lukasz
> 
> 
> 
> 
>    K-POINT:  1.0000000000  0.5000000000  0.0000000000   112  12 W
>             1           1           8  jatom,nemin,nemax
>             1   ATOM
>             1   1.8018018018018018E-002  NUM, weight
>     0   0   1  2.60221268E-16  0.00000000E+00   -5.40303983E-16 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     1  -1   2  2.86916281E-16 -4.69385598E-03   -2.00999914E-15 
> 1.39370083E-02    0.00000000E+00  0.00000000E+00    3.39480612E-14 
> -6.74796430E-01    0.00000000E+00  0.00000000E+00
>     1   0   3 -0.00000000E+00 -2.00964551E-03    0.00000000E+00 
> 5.96704418E-03    0.00000000E+00  0.00000000E+00   -0.00000000E+00 
> -2.88909932E-01    0.00000000E+00  0.00000000E+00
>     1   1   4  2.86916281E-16  4.69385598E-03   -2.00999914E-15 
> -1.39370083E-02    0.00000000E+00  0.00000000E+00 3.39480612E-14 
> 6.74796430E-01    0.00000000E+00  0.00000000E+00
>     2  -2   5 -2.42907691E-16  2.49342676E-03   -1.73032916E-16 
> -5.78839244E-03   -0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     2  -1   6  1.82264517E-16 -7.54868519E-04   -4.65058419E-17 
> 1.75239766E-03   -0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     2   0   7 -4.15664411E-16  0.00000000E+00    2.83273479E-16 
> -0.00000000E+00   -0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     2   1   8 -1.82264517E-16 -7.54868519E-04    4.65058419E-17 
> 1.75239766E-03   -0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     2   2   9 -2.42907691E-16 -2.49342676E-03   -1.73032916E-16 
> 5.78839244E-03   -0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     3  -3  10 -5.25533553E-18 -5.74114831E-04   -3.70079029E-16 
> 2.64701447E-03    0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     3  -2  11  1.14832148E-16 -7.09955076E-04    5.94043515E-16 
> 2.38542576E-03    0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     3  -1  12  1.09946596E-16 -2.52160001E-03    1.69024006E-15 
> 7.91632710E-03    0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     3   0  13  0.00000000E+00  4.66796968E-04    0.00000000E+00 
> -1.17957558E-03    0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     3   1  14  1.09946596E-16  2.52160001E-03    1.69024006E-15 
> -7.91632710E-03    0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     3   2  15 -1.14832148E-16 -7.09955076E-04   -5.94043515E-16 
> 2.38542576E-03    0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     3   3  16 -5.25533553E-18  5.74114831E-04   -3.70079029E-16 
> -2.64701447E-03    0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     4  -4  17  4.94473493E-17  8.06437880E-04   -9.23437474E-16 
> -2.37542253E-03    0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
>     4  -3  18  4.68841179E-17 -2.84229742E-04    8.36550189E-17 
> 1.08576915E-03    0.00000000E+00  0.00000000E+00 0.00000000E+00 
> 0.00000000E+00    0.00000000E+00  0.00000000E+00
> 

-- 
--------------------------------------------------------------------------
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-165300
Email: peter.blaha at tuwien.ac.at    WIEN2k: http://www.wien2k.at
WWW:   http://www.imc.tuwien.ac.at
-------------------------------------------------------------------------


More information about the Wien mailing list