[Wien] case.almblm along used-defined quantization axis

pluto pluto at physics.ucdavis.edu
Sun Mar 19 12:00:24 CET 2023


Dear Prof. Blaha,

Thank you for the quick response. Unfortunately some things are still 
unclear.

Taking as an example the celebrated family of 2H TMDCs (bulk MoS2, WSe2, 
etc), sgroup will identify the space group 186, and create a case.struct 
with 3 atoms, each having 2 equivalent positions. Total unit cell has 6 
atoms. I understand that each of the 2 equivalent atoms are related by 
inversion.

I have 4 questions to make sure I am not doing something completely 
wrong:

1. There are 6 atoms in the unit cell, but case.almblm seems to contain 
data for 3 atoms? This suggests that case.almblm contains data for 
inequivalent atoms only. Are the printed wave functions the ones inside 
the LAPW sphere of each first equivalent position (as defined in 
case.struct)?

2. Regarding loc-rot matrices. Actually, I think they are printed by x 
qtl into case.outputqup file. Can I just plug these matrices from 
case.outputqup into case.struct?

3. What are the matrices in the case.rotlm (they don't depend on the 
settings in case.inq)? Can I ignore these?

4. The original loc-rot matrices in case.struct must be related to some 
real or reciprocal space directions. What are these directions for 
hexagonal and rhombohedral lattices? Is this starting coordinate system 
referenced to real space or reciprocal space vectors?

Important files for this test case are pasted below.

Best,
Lukasz






case.inq

-9.0   3.0           Emin  Emax
    3                 number of atoms
    1  88  0  1       iatom,qsplit,symmetrize,locrot
3   0  1  2          nL, l-values
1 1 1
    2   1  0  1       iatom,qsplit,symmetrize,locrot
3   0  1  2          nL, l-values
1 1 1
    3   1  0  1       iatom,qsplit,symmetrize,locrot
3   0  1  2          nL, l-values
1 1 1


case.struct

H                            3 186
              RELA
   6.202084  6.202084 24.447397 90.000000 90.000000120.000000
ATOM  -1: X=0.33333333 Y=0.66666666 Z=0.50000000
           MULT= 2          ISPLIT= 4
       -1: X=0.66666667 Y=0.33333334 Z=0.00000000
Se1        NPT=  781  R0=.000050000 RMT=   2.33000   Z:  34.00000
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
                      0.0000000 1.0000000 0.0000000
                      0.0000000 0.0000000 1.0000000
ATOM  -2: X=0.66666666 Y=0.33333333 Z=0.63179000
           MULT= 2          ISPLIT= 4
       -2: X=0.33333334 Y=0.66666667 Z=0.13179000
W 1        NPT=  781  R0=.000005000 RMT=   2.45000   Z:  74.00000
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
                      0.0000000 1.0000000 0.0000000
                      0.0000000 0.0000000 1.0000000
ATOM  -3: X=0.33333333 Y=0.66666666 Z=0.76358100
           MULT= 2          ISPLIT= 4
       -3: X=0.66666667 Y=0.33333334 Z=0.26358100
Se2        NPT=  781  R0=.000050000 RMT=   2.33000   Z:  34.00000
LOCAL ROT MATRIX:    1.0000000 0.0000000 0.0000000
                      0.0000000 1.0000000 0.0000000
                      0.0000000 0.0000000 1.0000000
   12      NUMBER OF SYMMETRY OPERATIONS
  1 0 0 0.00000000
  0 1 0 0.00000000
  0 0 1 0.00000000
        1   A   1 so. oper.  type  orig. index
  0-1 0 0.00000000
  1-1 0 0.00000000
  0 0 1 0.00000000
        2   A   2
-1 1 0 0.00000000
-1 0 0 0.00000000
  0 0 1 0.00000000
        3   A   3
-1 0 0 0.00000000
  0-1 0 0.00000000
  0 0 1 0.50000000
        4   A   4
  0 1 0 0.00000000
-1 1 0 0.00000000
  0 0 1 0.50000000
        5   A   5
  1-1 0 0.00000000
  1 0 0 0.00000000
  0 0 1 0.50000000
        6   A   6
  0-1 0 0.00000000
-1 0 0 0.00000000
  0 0 1 0.00000000
        7   B   7
-1 1 0 0.00000000
  0 1 0 0.00000000
  0 0 1 0.00000000
        8   B   8
  1 0 0 0.00000000
  1-1 0 0.00000000
  0 0 1 0.00000000
        9   B   9
  0 1 0 0.00000000
  1 0 0 0.00000000
  0 0 1 0.50000000
       10   B  10
  1-1 0 0.00000000
  0-1 0 0.00000000
  0 0 1 0.50000000
       11   B  11
-1 0 0 0.00000000
-1 1 0 0.00000000
  0 0 1 0.50000000
       12   B  12



case.outputqup produced by x qtl (this quite large file, I only paste 
first lines)

                               
--------------------------------------------------
                                  S T R U C T U R A L   I N F O R M A T I 
O N
                               
--------------------------------------------------


    SUBSTANCE                    = WSe2                                   
s-o calc. M||  0.00  0.00  1.00

    LATTICE                      = H
    LATTICE CONSTANTS ARE        =    6.2020840   6.2020840  24.4473970
    NUMBER OF ATOMS IN UNITCELL  =   3
    MODE OF CALCULATION IS       = RELA
   BR1,  BR2
    1.16980   0.58490   0.00000      1.16980   0.58490   0.00000
    0.00000   1.01308   0.00000      0.00000   1.01308   0.00000
    0.00000   0.00000   0.25701      0.00000   0.00000   0.25701
  IORD=          12
  atom  1; type   1; qsplit= 88; for L=  0  1  2
  Symmetrization over eq. k-points is not performed
  allowed for invariant DOS
  New z axis ||    1.0000   1.0000   1.0000
  LATTICE:H
   New local rotation matrix in global orthogonal system
                        new x     new y     new z
LOCAL ROT MATRIX:   -0.5000000-0.8394340 0.2129568
                      0.8660254-0.4846474 0.1229507
                      0.0000000 0.2459014 0.9692949
   Population matrix for TELNES
  Population matrix diagonal in L for L=  0  1  2
  atom  2; type   2; qsplit=  1; for L=  0  1  2
  Symmetrization over eq. k-points is not performed
  allowed for invariant DOS
  New z axis ||    1.0000   1.0000   1.0000
  LATTICE:H
   New local rotation matrix in global orthogonal system
                        new x     new y     new z
LOCAL ROT MATRIX:   -0.5000000-0.8394340 0.2129568
                      0.8660254-0.4846474 0.1229507
                      0.0000000 0.2459014 0.9692949
  L=  0. Unitary transformation to Ylm basis
   Real part of unitary matrix
    1.0000
   Imaginary part of unitary matrix
    0.0000
  L=  1. Unitary transformation to Ylm basis
   Real part of unitary matrix
    1.0000   0.0000   0.0000
    0.0000   1.0000   0.0000
    0.0000   0.0000   1.0000
   Imaginary part of unitary matrix
    0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000
  L=  2. Unitary transformation to Ylm basis
   Real part of unitary matrix
    1.0000   0.0000   0.0000   0.0000   0.0000
    0.0000   1.0000   0.0000   0.0000   0.0000
    0.0000   0.0000   1.0000   0.0000   0.0000
    0.0000   0.0000   0.0000   1.0000   0.0000
    0.0000   0.0000   0.0000   0.0000   1.0000
   Imaginary part of unitary matrix
    0.0000   0.0000   0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000   0.0000   0.0000
  atom  3; type   3; qsplit=  1; for L=  0  1  2
  Symmetrization over eq. k-points is not performed
  allowed for invariant DOS
  New z axis ||    1.0000   1.0000   1.0000
  LATTICE:H
   New local rotation matrix in global orthogonal system
                        new x     new y     new z
LOCAL ROT MATRIX:   -0.5000000-0.8394340 0.2129568
                      0.8660254-0.4846474 0.1229507
                      0.0000000 0.2459014 0.9692949
  L=  0. Unitary transformation to Ylm basis
   Real part of unitary matrix
    1.0000
   Imaginary part of unitary matrix
    0.0000
  L=  1. Unitary transformation to Ylm basis
   Real part of unitary matrix
    1.0000   0.0000   0.0000
    0.0000   1.0000   0.0000
    0.0000   0.0000   1.0000
   Imaginary part of unitary matrix
    0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000
  L=  2. Unitary transformation to Ylm basis
   Real part of unitary matrix
    1.0000   0.0000   0.0000   0.0000   0.0000
    0.0000   1.0000   0.0000   0.0000   0.0000
    0.0000   0.0000   1.0000   0.0000   0.0000
    0.0000   0.0000   0.0000   1.0000   0.0000
    0.0000   0.0000   0.0000   0.0000   1.0000
   Imaginary part of unitary matrix
    0.0000   0.0000   0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000   0.0000   0.0000
    0.0000   0.0000   0.0000   0.0000   0.0000
  LATTICE:H


case.rotlm produced by x qtl

    1.16980   0.00000   0.00000
    0.58490   1.01308   0.00000
    0.00000   0.00000   0.25701
inequivalent atomnumber   1 number  1 total    1
    1.00000   0.00000   0.00000
    0.00000   1.00000   0.00000
    0.00000   0.00000   1.00000
inequivalent atomnumber   1 number  2 total    2
   -1.00000   0.00000   0.00000
    0.00000  -1.00000   0.00000
    0.00000   0.00000   1.00000
inequivalent atomnumber   2 number  1 total    3
    1.00000   0.00000   0.00000
    0.00000   1.00000   0.00000
    0.00000   0.00000   1.00000
inequivalent atomnumber   2 number  2 total    4
   -1.00000   0.00000   0.00000
    0.00000  -1.00000   0.00000
    0.00000   0.00000   1.00000
inequivalent atomnumber   3 number  1 total    5
    1.00000   0.00000   0.00000
    0.00000   1.00000   0.00000
    0.00000   0.00000   1.00000
inequivalent atomnumber   3 number  2 total    6
   -1.00000   0.00000   0.00000
    0.00000  -1.00000   0.00000
    0.00000   0.00000   1.00000




On 2023-03-19 07:10, Peter Blaha wrote:
> For this purpose you can simply redefine the loc.rot. in case.struct
> in the way you want it and then call lapw2.
> 
> PS: The lapw2-call in   x qtl   is only to get a proper EF and weight 
> files.
> 
> Am 18.03.2023 um 22:15 schrieb pluto via Wien:
>> Dear All,
>> 
>> I am again coming back to the Ylm band characters etc...
>> 
>> This command
>> 
>> x lapw2 -up -so -alm -qtl -band
>> 
>> produces case.almblm file. I am guessing that here the quantization 
>> axis (i.e. the direction of pz and dz2, the z-axis) is oriented along 
>> the axis defined by the local-rotation-matrices in case.struct 
>> (actually can be different for each atom).
>> 
>> However, I am interested to have case.almblm file along the 
>> quantization axis user-defined in case.inq. I tried running
>> 
>> x qtl -band -up -alm -so
>> 
>> But this did not produce case.almblm file. Actually from the :log file 
>> I can see that x qtl is calling lapw2:
>> 
>> Sat Mar 18 09:37:27 PM CET 2023> (x) qtl -band -up -alm -so
>> Sat Mar 18 09:37:27 PM CET 2023> (x) lapw2 -fermi -so -up
>> 
>> Is there any way of printing case.almblm file with the user-defined 
>> quantization axis?
>> 
>> x qtl produces case.rotlm, which I believe contains new 
>> local-rotation-matrices. Perhaps I can manually plug these matrices 
>> somewhere (in case.struct ?) as an input for x lapw2?
>> 
>> Best,
>> Lukasz
>> _______________________________________________
>> Wien mailing list
>> Wien at zeus.theochem.tuwien.ac.at
>> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
>> SEARCH the MAILING-LIST at:  
>> http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html


More information about the Wien mailing list