Hello <br>
<br>
I´m trying to evaluate the following Multiple Scattering formula which yield the <br>
tan of the phase shifts d at the energy E and raddi R.<br>
<br>
tan d =(RK j'_l(KR) -b_l j_l(KR) ) / (RK n'_l(KR) -b_l n_l(KR) )<br>
<br>
where b_l are the logarithmic derivatives of the radial function u_l at R and E, K is<br>
sqrt(E) and j, j' n, n' are the spherical bessel the r-derivative of the spherical bessel<br>
and the corresponding neumann functions.<br>
<br>
Everything is tested and works pretty fine. <br>
<br>
I tried to evaluate the b_l (logarithmic derivatives of u_l) by means of the "Potential Parameters"<br>
obtained in lapw1 (sub atpar) employing the linear definition of u_l<br>
<br>
u_l(r,E) = u_l(r,E_l) +(E-E_l) du_l/dE<br>
<br>
Now, trying to reproduce the well known results for Nb, I obtained significant differences in the phase-shifts.<br>
<br>
I feel that I´m dropping out something in the u_l construction.<br>
In the formal theory, u_l involves two constants A_l and B_l. In atpar they are already considered?<br>
<br>
Any help is acknowledged.<br>
<br>
Emilio Orgaz<br><br><div><span class="gmail_quote">On 6/29/06, <b class="gmail_sendername">Peter Blaha</b> <<a href="mailto:pblaha@theochem.tuwien.ac.at">pblaha@theochem.tuwien.ac.at</a>> wrote:</span><blockquote class="gmail_quote" style="border-left: 1px solid rgb(204, 204, 204); margin: 0pt 0pt 0pt 0.8ex; padding-left: 1ex;">
In case.output1 you find the relevant "potential parameters", i.e.<br>u_l(RMT), du/dr; du/de,...<br><br>Otherwise, the routine atpar.f calculates the radial wavefunctions.<br><br>Regards<br><br>> I´m interested on the electron-phonon coupling constant calculated
<br>> a la Gaspari-Gyorffy. For this, I need the phase shifts for different<br>> chanels.<br>><br>> I know that those phase shifts can be obtained from the log-derivitives of<br>> the radial function<br>> u_l(r) at the MT radii.
<br>><br>> I would like to know how to extract u_l(r) and the corresponding log-der<br>> from WIEN2K code.<br>><br>> thank you in advance for your help<br>><br>> Emilio Orgaz<br>><br>> On 10/13/05, Ashok Kumar Verma <
<a href="mailto:hpps@magnum.barc.ernet.in">hpps@magnum.barc.ernet.in</a>> wrote:<br>> ><br>> > Dear WIEN users,<br>>
> Is
there anyone who can tell me how to calculate the<br>> > electron-phonon coupling constant using WIEN. I saw one paper by P. Blaha<br>> > (PRB 62, 6774) where this has been done within the rigid muffin-tin<br>
> > approximation. But i dod not knos how to do it.<br>> > thanking in advance<br>> ><br>> ><br>> ><br>> > _______________________________________________<br>> > Wien mailing list
<br>> > <a href="mailto:Wien@zeus.theochem.tuwien.ac.at">Wien@zeus.theochem.tuwien.ac.at</a><br>> > <a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
</a><br>> ><br>><br>><br>><br>> --<br>> Dr. Emilio Orgaz<br>> Departamento de Física y Química Teórica<br>> Facultad de Química, UNAM<br>> <a href="mailto:Emilio.Orgaz@gmail.com">Emilio.Orgaz@gmail.com
</a><br>> Tel. 5622-3776<br>> Fax. 5622-3521<br>><br><br><br> P.Blaha<br>--------------------------------------------------------------------------<br>Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
<br>Phone: +43-1-58801-15671 FAX: +43-1-58801-15698<br>Email: <a href="mailto:blaha@theochem.tuwien.ac.at">blaha@theochem.tuwien.ac.at</a> WWW: <a href="http://info.tuwien.ac.at/theochem/">http://info.tuwien.ac.at/theochem/
</a><br>--------------------------------------------------------------------------<br>_______________________________________________<br>Wien mailing list<br><a href="mailto:Wien@zeus.theochem.tuwien.ac.at">Wien@zeus.theochem.tuwien.ac.at
</a><br><a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br></blockquote></div><br><br clear="all"><br>-- <br>Dr. Emilio Orgaz<br>Departamento de Física y Química Teórica
<br>Facultad de Química, UNAM<br><a href="mailto:Emilio.Orgaz@gmail.com">Emilio.Orgaz@gmail.com</a><br>Tel. 5622-3776 <br>Fax. 5622-3521