<div class="MsoNormal">Dear WIEN2k community,</div> <div class="MsoNormal">For a cubic point group one expects that delta (d) = (d_xy+d_x2-y2)-1/2*(d_xz+d_yz)+d_z2 is zero. Thus I assume that the following given d_e_g, 0.3974, equally is distributed in d_x2-y2=0.3974/2 and d_z2=0.3974/2, and similarly the following d_t2g=0.7171 is equally distributed in d_xy=0.7171/3, d_xz=0.7171/3 and d_yz=0.7171/3:</div> <div class="MsoNormal">:PCS001: PARTIAL CHARGES SPHERE =<span style=""> </span>1 S,P,D,F,<span style=""> </span>D-EG,D-T2G</div> <div class="MsoNormal">:QTL001: 2.1138 5.8961 1.1146 1.0194 0.0000 0.0000 0.0000 0.3974 0.7171 0.0000 0.0000 0.0000</div> <div class="MsoNormal">If the above assumption, which I am not sure about it, is true then delta (d) as expected is zero.</div> <div class="MsoNormal">Form a spin polarized calculation I have obtained the following results:</div> <div
class="MsoNormal">:PCS001: PARTIAL CHARGES SPHERE =<span style=""> </span>1 S,P,D,F,PZ,PXY, D-Z2,D-XY,X2Y2,D-XZ,YZ</div> <div class="MsoNormal">:QTL001: 0.9682 2.5982 5.3246 0.9516 0.8643 1.7338 0.0000 1.0694 2.1361 2.1192 0.0000 0.0000</div> <div class="MsoNormal">0.9518 0.9519 0.9514</div> <div class="MsoNormal">:QTL001: 0.9663 2.5888 5.2987 0.0166 0.8599 1.7289 0.0000 1.0625 2.1282 2.1080 0.0000 0.0000</div> <div class="MsoNormal">I have expected form several physical reasons, e.g. being close to the cubic point group, to be the delta (d) not far from zero. However, again with assuming to be distributed equally (which I am not sure about it) the d_xy_up=2.1361 as well as d_xy_dn=2.1282 in d_xz_up and d_yz_up as well as d_xz_dn and d_yz_dn respectively, the occupation numbers can be written as follows:</div> <div class="MsoNormal">d_z2=1.0694+1.0625</div> <div class="MsoNormal">d_xy=(2.1361+2.1282)/3=d_xz=d_yz</div> <div
class="MsoNormal"><span style="font-size: 10pt; font-family: Arial;">d_x2-y2=2.1192+2.1081<o:p></o:p></span></div> <div class="MsoNormal"><o:p> </o:p></div> <div class="MsoNormal">In this case I have obtained the value of <span style="font-size: 10pt; font-family: Arial;">2.0954 for the delta(d), which is so far from my expectation.<o:p></o:p></span></div> <div class="MsoNormal"><span style="font-size: 10pt; font-family: Arial;">Other way of treating this result, closing eyes on the physical expectation, is to just find the following one to one corresponded values of QTL’s to the PCS’s:<o:p></o:p></span></div> <div class="MsoNormal">d_z2=1.0694+1.0625</div> <div class="MsoNormal">d_xy=2.1361+2.1282</div> <div class="MsoNormal"><span style="font-size: 10pt; font-family: Arial;">d_x2-y2=2.1192+2.1081<o:p></o:p></span></div> <div class="MsoNormal">d_xz=d_yz=0</div> <div class="MsoNormal">In this case delta (d) is 6.3597,
which is extremely large!</div> <div class="MsoNormal">Any comments are most welcome.</div> <div class="MsoNormal">With my best whishes for all of you,</div> <BR><BR>Sincerely yours,<br>S. Jalali.<br>/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/<br>Saeid Jalali Asadabadi,<br>Department of Physics, Faculty of Science,<br>University of Isfahan (UI), Hezar Gerib Avenue,<br>81744 Isfahan, Iran.<br>Phones:<br>Dep. of Phys. :+98-0311-793 2435<br>Office :+98-0311-793 2430<br>Fax No. :+98-0311-793 2409<br>E-mail :s_jalali_a@yahoo.com<br>www :http://www.ui.ac.ir<br>/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/_/<p> 
        
                <hr size=1>Do you Yahoo!?<br> Everyone is raving about the <a href="http://us.rd.yahoo.com/evt=42297/*http://advision.webevents.yahoo.com/handraisers"> all-new Yahoo! Mail Beta.</a>