<html>
<head>
<style>
.hmmessage P
{
margin:0px;
padding:0px
}
body.hmmessage
{
FONT-SIZE: 9pt;
FONT-FAMILY:Tahoma
}
</style>
</head>
<body class='hmmessage'>
<PRE style="FONT-FAMILY: 宋体">Dear Prof. Blaha:</PRE><PRE style="FONT-FAMILY: 宋体"> thanks for you kind reply.</PRE><PRE style="FONT-FAMILY: 宋体">However, I probably think that you misunderstood you question.</PRE><PRE style="FONT-FAMILY: 宋体">My questions can be expressed as foloowings:</PRE><PRE style="FONT-FAMILY: 宋体">1) whether the basis vectors of the coordinate system on which the rotation operation act
are unit cell or primary cell basis, which may be not orthogonal to each other.</PRE><PRE style="FONT-FAMILY: 宋体">2) for two vectors whose coordinates are expressed in non-orthogonal basis, the dot-product operation</PRE><PRE style="FONT-FAMILY: 宋体"> between them will not be directly implemented as the dot-product operation of two vectors whose coordintes </PRE><PRE style="FONT-FAMILY: 宋体"> are expressed in orthogonal system. I think that at least one should first convert the coordinats of </PRE><PRE style="FONT-FAMILY: 宋体"> non-orthogonal systm to the corresponding coordinates in orthogonal system, then dot-product </PRE><PRE style="FONT-FAMILY: 宋体"> operation will be carried out as usually.i.e (x1i+y1j+z1k).dot.(x2i+y2j+z2k)=x1*x2+y1*y2+z1*z2</PRE><PRE style="FONT-FAMILY: 宋体">but thoroughly this conversion step is not found in stern.f </PRE><PRE style="FONT-FAMILY: 宋体">so, what is goning on here about the basis vectors choosing techniques ?</PRE><P!
RE style="FONT-FAMILY: 宋体"> </PRE><PRE style="FONT-FAMILY: 宋体">Any suggestion is greatly appreciated.</PRE><PRE style="FONT-FAMILY: 宋体">Wenmei</PRE><PRE style="FONT-FAMILY: 宋体">__________________________________________________________________________________________________________</PRE><PRE style="FONT-FAMILY: 宋体"> </PRE><PRE style="FONT-FAMILY: 宋体"> </PRE><PRE style="FONT-FAMILY: 宋体"> </PRE><PRE style="FONT-FAMILY: 宋体">No, these are not necessarily vectors in an orthogonal system. We adapt
the coordinates to the specific case, eg. in hex lattices, hexagonal
coordinates (with 120 angle) are used.
This is determined by the ORTHO variable in latgen.
??? schrieb:
> Dear Wien2k user,
> I have a very step-in question:
> In case.struct,I find every element of rotation operation is integer,
> which strongly indicates that the basis vectors are choosen as the
> primary cell vectors,
> however, in the subroutine star subroutine /SRC_dstart/stern.f, there
> are dot-product operation,
> like TK and K below:
> #---------------------------------------------------------------------
> DO 2 J=1,3
> TK=TK+TAU(J,I)*G(J)
> K=0
> DO 3 L=1,3
> K=IZ(J,L,I)*G(L)+K
> 3 CONTINUE
> STG(J,I)=K
> 2 CONTINUE
> TK=TK*TPI
> TMP=DCMPLX(COS(TK),SIN(TK))
> #----------------------------------------------------------------------
> but actually the dot-production above is only applied for vectors with
> coordinates
> in orthogonal system.So is the dot-product quality meaningful,or these
> operations used here seem wrong ?
>
> Any suggestion is greatly appreciated
>
> Wenmei
>
>
>
> ------------------------------------------------------------------------
> ???Hotmail?????,?? Windows Live Mail? ????!
> <http://get.live.com/wl/all>
>
>
> ------------------------------------------------------------------------
>
> _______________________________________________
> Wien mailing list
> Wien@zeus.theochem.tuwien.ac.at
> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
--
P.Blaha
--------------------------------------------------------------------------
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-15671 FAX: +43-1-58801-15698
Email: blaha@theochem.tuwien.ac.at WWW: http://info.tuwien.ac.at/theochem/
--------------------------------------------------------------------------
_______________________________________________
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
</PRE><br /><hr />轻松把Hotmail下载到本地,试试 Windows Live Mail。 <a href='http://get.live.com/wl/all' target='_new'>立即尝试!</a></body>
</html>