<div dir="rtl"><div dir="ltr" style>Dear Gavin</div><div dir="ltr" style>I wouldn&#39;t know!</div><div dir="ltr" style>Dr. Peter didn&#39;t bother to give me a full answer- just to use the UG.</div><div dir="ltr" style>Still waiting for your HELP!</div>
<div dir="ltr" style>YOU DID YOUR BEST; also the problem that I had was indeed conected to the browser, as you suspected</div><div dir="ltr" style>Victor<br><br><div class="gmail_quote" style><div style>2012/9/19 Gavin Abo <span dir="ltr">&lt;<a href="mailto:gsabo@crimson.ua.edu" target="_blank">gsabo@crimson.ua.edu</a>&gt;</span></div>
<blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><div style>
  
    
  
  <div bgcolor="#FFFFFF" text="#000000" style>
    <div style>In Wien2k 12.1,
      $WIENROOT/SRC_qtl/ltext.f contains the following line:<br>
      <br>
      txt(3,2)=&#39; f,x3-3xy2,y3-3yx2,z(x2-y2),xyz,xz2,yz2,z3, real basis &#39;<br>
      <br>
      Is this the &quot;general set&quot; for f-orbitals, it looks like it?<br>
      <br>
      ltext.f seems to be unused code.  Instead,
      $WIENROOT/SRC_qtl/qtltext.f is used, which contains:<br>
      <br>
      txt(3,2)=&#39;f,A2,x(T1),y(T1),z(T1),ksi(T2),eta(T2),zeta(T2), real
      basis &#39;<br>
      ...<br>
      txf(1)=&#39; A2=xyz  x(T1)=x(x2-3r2/5)  y(T1)=y(y2-3r2/5) 
      z(T1)=z(z2-3r2/5) &#39;<br>
      txf(2)=&#39; ksi(T2)=x(y2-z2)   eta(T2)=y(z2-y2)   zeta(T2)=z(x2-y2)&#39;<br>
      <br>
      This should be used for l=3 and qsplit=2.  In
      $WIENROOT/SRC_qtl/QTL-tehnical-report.pdf,<br>
      it mentions &quot;octahedral potential&quot;.  Would it be proper
      terminology to call this the &quot;octahedral set&quot; <br>
      for f-orbitals that the program outputs?<br>
      <br>
      Does this mean that the Wien2k code currently does not output the
      &quot;cubic set&quot;?<br>
      <br>
      The following site has equations (cubic &amp; general set) for the
      5f orbitals that might be of interest:<br>
      <br>
      <a href="http://winter.group.shef.ac.uk/orbitron/AOs/5f/equations.html" target="_blank">http://winter.group.shef.ac.uk/orbitron/AOs/5f/equations.html</a><br>
      <br>
      Sorry for giving more questions than answers.  The topic is
      currently beyond by current understanding, <br>
      but hopefully it will provide some insight.<div style><div class="h5" style><br>
      <br>
      On 9/18/2012 11:44 AM, Viktor Zano wrote:<br>
    </div></div></div>
    <blockquote type="cite" style>
      <div style><div style><div class="h5" style>Hi
        <div style>As I said, I used 
          the program QTL (and not lapw2 -qtl) </div>
        <div style>The automatic  ISPLIT was -2.</div>
        <div style>Sorry, I read the manual and I couldn&#39;t find it. I spent
          few weeks and still don&#39;t have a clue!</div>
        </div></div><div style><div style><div class="h5" style>So again I ask your help<br>
          <br>
          </div></div><div class="gmail_quote" style>2012/9/17 Peter Blaha <span dir="ltr">&lt;<a href="mailto:pblaha@theochem.tuwien.ac.at" target="_blank">pblaha@theochem.tuwien.ac.at</a>&gt;</span><br>
            <blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex"><div style><div class="h5" style>
              Don&#39;t play with ISPLIT. Leave it as set during
              initialization.<br>
              <br>
              You should use the program QTL (and not lapw2 -qtl) and
              its input file case.inq<br>
              <br>
              Read the UG.<br>
              <br>
              Am 16.09.2012 13:34, schrieb Viktor Zano:<br>
              <blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex">
                <div style>
                  <div style>
                    Dear Wien2k users<br>
                    I&#39;m trying to find the DOS of the 5f orbitals for
                    cubic set (whole 7 of them: 5fy^3, 5fz^3, 5fx^3,
                    5fx(z^2-y^2), 5fy(z^2-x^2), 5fz(x^2-y^2), 5fxyz).<br>
                    Attached the struc file (UAl3_new4.struc).<br>
                    The &quot;QTL&quot; calculates special partial charge, and
                    through it a proper input file (*.int).<br>
                    I couldn&#39;t find how to do it using qtl. Both Wien2k
                    manual and other users didn&#39;t help.<br>
                    I used different QSPLIT, which didn&#39;t help.<br>
                    qsplit=-2<br>
                    ATOM  U: 1  tot,s,p,d,d-eg,d-t2g,f,A2,T1,T2,<br>
                    ATOM  Al: 2  tot,s,p,pxy,pz,<br>
                    <br>
                    qsplit=-1<br>
                    ATOM  U: 1  tot,s,p,p1/2(-1/2),p1/2(1/2),p3/2(-3/2),,,p3/2(3/2),
                    d,d3/2(-3/2),,,d3/2(3/2),(d5/2)(-5/2),,,,,d5/2(5/2),f,f5/2(-5/2),,,,,f5/2(5/2),f7/2(-7/2),,,,,,,f7/2(7/2),<br>
                    ATOM  Al: 2  tot,s,p,p1/2(-1/2),p1/2(1/2),p3/2(-3/2),,,p3/2(3/2),<br>
                    <br>
                    qsplit=0<br>
                    ATOM  U: 1  tot,s,p,p1/2,p3/2,d,d3/2,d5/2,f,f5/2,f7/2,<br>
                    ATOM  Al: 2  tot,s,p,p1/2,p3/2<br>
                    <br>
                    qsplit=1<br>
                    ATOM  U: 1  tot,s,p,(1;-1),(1;0),(1;1),d,(2;-2),(2;-1),(2;0),(2;1),(2;2),f,(3;-3),(3;-2),(3;-1),(3;0),(3;1),(3;2),(3;3),<br>
                    ATOM  Al: 2  tot,s,p,(1;-1),(1;0),(1;1),<br>
                    <br>
                    qsplit=2<br>
                    ATOM  U: 1  tot,s,p,px,py,pz,d,dz2,d(x2-y2),dxy,dxz,dyz,f,A2,x(T1),y(T1),z(T1),ksi(T2),eta(T2),zeta(T2),<br>
                    ATOM  Al: 2  tot,s,p,px,py,pz,<br>
                    <br>
                    qsplit=3<br>
                    ATOM  U: 1  tot,s,p,pxy,pz,d,dz2,d(x2-y2),d(yz+xz),dxy,f,A2,[x(T1)+y(T1)],z(T1),[ksi(T2)+eta(T2)],zeta(T2),<br>
                    ATOM  Al: 2  tot,s,p,pxy,pz,<br>
                    <br>
                    qsplit=4<br>
                    ATOM  U: 1  tot,s,p,pxy,pz,d,dz2,d[(x2-y2)+xy],d[yz+xz],f,A2+zeta(T2),x(T1)+ksi(T2),y(T1)+eta(T2),z(T1),<br>
                    ATOM  Al: 2  tot,s,p,pxy,pz,<br>
                    <br>
                    qsplit=5<br>
                    ATOM  U: 1  tot,s,p,d,d-eg,d-t2g,f,A2,T1,T2,<br>
                    ATOM  Al: 2  tot,s,p,<br>
                    <br>
                    qsplit=88<br>
                    ATOM  U: 1  tot,s,p,d,f,xdos(i,i),i=1,lxdos2)<br>
                    ATOM  Al: 2  tot,s,p,d,f,xdos(i,i),i=1,lxdos2)<br>
                    <br>
                    qsplit=99<br>
                    ATOM  U: 1  tot,s,p,d,f,xdos(i,j),j=1,i),i=1,lxdos2)<br>
                    ATOM  Al: 2  tot,s,p,d,f,xdos(i,j),j=1,i),i=1,lxdos2)<br>
                    <br>
                    Please help, Victor<br>
                    <br>
                  </div>
                </div>
                <br>
              </blockquote>
              <br></div></div><div class="im" style>
              -- <br>
              -----------------------------------------<br>
              Peter Blaha<br>
              Inst. Materials Chemistry, TU Vienna<br>
              Getreidemarkt 9, A-1060 Vienna, Austria<br>
              Tel: +43-1-5880115671<br>
              Fax: +43-1-5880115698<br>
              email: <a href="mailto:pblaha@theochem.tuwien.ac.at" target="_blank">pblaha@theochem.tuwien.ac.at</a><br>
              -----------------------------------------
            </div></blockquote>
          </div>
        </div>
      </div>
    </blockquote>
    <br>
  </div>

</div><br>_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at">Wien@zeus.theochem.tuwien.ac.at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
<br></blockquote></div><br></div></div>