Dear Xavier, you said that you choose the Ueff value to reproduce one property and
      then you use this Ueff value to predict the others. My question is can I choose Ueff to reproduce a structural property (such as the lattice constant or cell volume) and than use that value of Ueff to predict electronic properties? <br>
<br><br><br><div class="gmail_quote">On Fri, Mar 1, 2013 at 3:04 PM, Laurence Marks <span dir="ltr">&lt;<a href="mailto:L-marks@northwestern.edu" target="_blank">L-marks@northwestern.edu</a>&gt;</span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
If all you have are the atomic positions (and lattice constant) then the only unbiased approach would be to calculate the U, see <a href="http://www.wien2k.at/reg_user/textbooks/Constraint_U.pdf" target="_blank">http://www.wien2k.at/reg_user/textbooks/Constraint_U.pdf</a>.<div>

<br></div><div>N.B., the DFT+U method is variational for a fixed U, but I don&#39;t think it is variational as a function(al) of U.<br><br><div class="gmail_quote"><div class="im">On Fri, Mar 1, 2013 at 1:58 PM, Zsolt Rak <span dir="ltr">&lt;<a href="mailto:zsolt.rak@gmail.com" target="_blank">zsolt.rak@gmail.com</a>&gt;</span> wrote:<br>

</div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">



<div><div class="im">
Let&#39;s suppose that the atomic positions (and lattice constants) are the only information that I have. Is it physically justified to use LDA+U/GGA+U to optimize the volume? or to tune the U value to reproduce the experimental lattice constants? Also, is the
 DFT+U method based on the variational principle?<br>
<br>
</div><div><div class="h5"><div class="gmail_quote">On Fri, Mar 1, 2013 at 2:43 PM, Laurence Marks <span dir="ltr">
&lt;<a href="mailto:L-marks@northwestern.edu" target="_blank">L-marks@northwestern.edu</a>&gt;</span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
You need more a-priori information than this, for instance the bulk energy of related compounds for which a U is relevant. Tuning the U to reproduce known data is not by itself spectacular science.<br>
<br>
<div class="gmail_quote">
<div>On Fri, Mar 1, 2013 at 1:24 PM, Zsolt Rak <span dir="ltr">&lt;<a href="mailto:zsolt.rak@gmail.com" target="_blank">zsolt.rak@gmail.com</a>&gt;</span> wrote:<br>
</div>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div>
<div>I want to calculate the most accurate bulk energy and the a-priori information I have are the atomic positions.<br>
<br>
<br>
<br>
</div>
<div class="gmail_quote">
<div>On Fri, Mar 1, 2013 at 1:59 PM, Laurence Marks <span dir="ltr">&lt;<a href="mailto:L-marks@northwestern.edu" target="_blank">L-marks@northwestern.edu</a>&gt;</span> wrote:<br>
</div>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div>
<div>My two cents. Both LDA+U and GGA+U are wrong. That said, for f-/d- systems they are often better than LDA/GGA for some properties. The question you should ask yourself is what property are you trying to measure/predict, and what a-priori information
 (reference state) do you have that can be used?
<div><br>
</div>
<div>For instance, if I want to calculate a surface energy then I would tune the U to give the most accurate bulk energy treating this as my a-priori information; similarly if I wanted to calculate the elastic behavior of a defect I would tune to the bulk elastic
 constants. In my opinion this is the only justifiable approach.
<div>
<div><br>
<br>
<div class="gmail_quote">On Fri, Mar 1, 2013 at 12:47 PM, Zsolt Rak <span dir="ltr">
&lt;<a href="mailto:zsolt.rak@gmail.com" target="_blank">zsolt.rak@gmail.com</a>&gt;</span> wrote:<br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
<div>Dear wien2k users, <br>
<br>
I am calculating the properties of several f-electron compounds. I would like to ask the users&#39; opinion about the volume optimization in an f- or d-electron system: which way is better (or physically justified), with LDA/GGA or with LDA+U/GGA+U? In my opinion,
 the LDA+U/GGA+U techniques were developed to correct band energies of localized states, so there is no fundamental physical reason to use LDA+U/GGA+U methods for volume optimization. However, we observe a change in the lattice parameters when we go from LDA/GGA
 to LDA+U/GGA+U. Also, from a brief search of the literature we found that, in many cases, people tune the Hubbard-U parameter to reproduce the experimental lattice constants.
<br>
I would appreciate further thoughts and insights into this issue.<br>
<br>
Thank you, <br>
Zs </div>
</blockquote>
</div>
<br>
<br clear="all">
<div><br>
</div>
</div>
</div>
<span><font color="#888888">-- <br>
Professor Laurence Marks<br>
Department of Materials Science and Engineering<br>
Northwestern University<br>
<a href="http://www.numis.northwestern.edu" target="_blank">www.numis.northwestern.edu</a>
<a href="tel:1-847-491-3996" value="+18474913996" target="_blank">1-847-491-3996</a><br>
&quot;Research is to see what everybody else has seen, and to think what nobody else has thought&quot;<br>
Albert Szent-Gyorgi </font></span></div>
<br>
</div>
</div>
<div>_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
<br>
</div>
</blockquote>
</div>
<br>
</div>
</blockquote>
</div>
<br>
<br clear="all">
<div>
<div>
<div><br>
</div>
-- <br>
Professor Laurence Marks<br>
Department of Materials Science and Engineering<br>
Northwestern University<br>
<a href="http://www.numis.northwestern.edu" target="_blank">www.numis.northwestern.edu</a>
<a href="tel:1-847-491-3996" value="+18474913996" target="_blank">1-847-491-3996</a><br>
&quot;Research is to see what everybody else has seen, and to think what nobody else has thought&quot;<br>
Albert Szent-Gyorgi </div>
</div>
<br>
_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
<br>
</blockquote>
</div>
<br>
</div></div></div>

</blockquote></div><div><div class="h5"><br><br clear="all"><div><br></div>-- <br>Professor Laurence Marks<br>Department of Materials Science and Engineering<br>Northwestern University<br><a href="http://www.numis.northwestern.edu" target="_blank">www.numis.northwestern.edu</a> <a href="tel:1-847-491-3996" value="+18474913996" target="_blank">1-847-491-3996</a><br>

&quot;Research is to see what everybody else has seen, and to think what nobody else has thought&quot;<br>Albert Szent-Gyorgi
</div></div></div>
<br>_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at">Wien@zeus.theochem.tuwien.ac.at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
<br></blockquote></div><br>