<div dir="ltr"><div>Dear Prof. Blaha<br><br></div>  It works very well after TEMP broadening is turned on. Thanks for your suggestion.<br></div><div class="gmail_extra"><br><br><div class="gmail_quote">2013/10/15 Peter Blaha <span dir="ltr">&lt;<a href="mailto:pblaha@theochem.tuwien.ac.at" target="_blank">pblaha@theochem.tuwien.ac.at</a>&gt;</span><br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Hi,<br>
<br>
I guess I never suggested B=10000 T, but anyway, what you should check is if the calculated HFF vary linear with the applied field.<br>
<br>
I could imagine that with such calculations where you should have some &quot;artificial&quot; degeneracy of the 4 Al atoms, the TETRA method makes some small problem. In any case, it looks already fairly similar.<br>
<br>
Have you ever tried TEMP (with a small broadening ??, so that you do not destroy the magnetic shift).<br>
In addition, I suggest to increase the IFFT factor in case.in0 to 4 or 6, so that aliasing problems are reduced.<br>
<br>
Otherwise I would need to check this out myself.<div><div class="h5"><br>
<br>
On 10/15/2013 06:25 PM, Jing-Han Chen wrote:<br>
</div></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><div><div class="h5">
Dear Prof. Blaha and other wien2k users:<br>
<br>
(I posted a similar message yesterday, apologies in case this appears as<br>
a repeat; the first message has not appeared on the list, perhaps<br>
reflected due to included images.)<br>
<br>
Regarding tests of the hyperfine fields in aluminum metal, we had<br>
thought about the issue of insufficient k-points, however we thought we<br>
had a handle on this issue. In a 9 T field, a rough calculation shows<br>
that the thin spin-polarized shell at Ef represents about 1/3000 of the<br>
BZ volume for fcc-Al. We ran a script gradually increasing the number of<br>
k-points, with a result (shown in<br>
<a href="http://people.physics.tamu.edu/jhchen/points.png" target="_blank">http://people.physics.tamu.<u></u>edu/jhchen/points.png</a>) that the HFF settles<br>
down within about 20% of the expected value for 10,000 k-points in B=9T,<br>
with fluctuations dying down to the order of 10% and less in the range<br>
30,000 - 80,000 k-points. We also ran a test for linearity in B at a<br>
setting of 10,000 k-points, and the results appeared to be quite linear<br>
up to 100 T (shown in <a href="http://people.physics.tamu.edu/jhchen/field.png" target="_blank">http://people.physics.tamu.<u></u>edu/jhchen/field.png</a>).<br>
<br>
We ran the test treating fcc-Al as simple cubic with 4 sites in order to<br>
be sure we understood how the field is applied in ORB, and expected if<br>
anything better convergence since the expanded cell gives a greater<br>
k-point density. However the results seem strange: with several k-point<br>
settings we found that in general, the HFF approached the expected value<br>
for fcc-Al after a relatively small number of iterations, yet without<br>
quite converging, and finally the HFF values diverged, with one or more<br>
going large and negative. We had not tried as many variations as for fcc<br>
since the results are much slower to obtain converged HFF.<br>
<br>
Following the suggestion of Prof. Blaha after our last posting we tried<br>
increasing to very large field and k-point values, and did finally get<br>
convergence (more than 10 last iterations of HFF is the same) for a<br>
setting of 100000 k-points and 10000  T, yielding 4 reasonably close<br>
positive values as in the following:<br>
<br>
------<br>
:HFF001:          143.345           0.000           0.572<br>
143.917 (KGAUSS)<br>
:HFF002:          143.344           0.000           0.572<br>
143.916 (KGAUSS)<br>
:HFF003:          144.427           0.000           0.583<br>
145.010 (KGAUSS)<br>
:HFF004:          143.344           0.000           0.572<br>
143.916 (KGAUSS)<br>
------<br>
<br>
However we are concerned that the HFF values are still not identical,<br>
whereas at 10,000 T the spin-polarized shell at Ef represents a<br>
significant fraction of the BZ, and the spin energy is quite large. We<br>
expected this to be more than enough k-points for random sampling of the<br>
shell at Ef.  For this reason, and in particular in light of the strange<br>
behavior in which the HFF values almost converge before diverging to<br>
widely separated values, is it possible that there might be some other<br>
issue that we are overlooking?<br>
<br>
Any suggestions would be appreciated.<br>
<br>
<br>
2013/10/7 Peter Blaha &lt;<a href="mailto:pblaha@theochem.tuwien.ac.at" target="_blank">pblaha@theochem.tuwien.ac.at</a><br></div></div>
&lt;mailto:<a href="mailto:pblaha@theochem.tuwien.ac.at" target="_blank">pblaha@theochem.<u></u>tuwien.ac.at</a>&gt;&gt;<div><div class="h5"><br>
<br>
    The hyperfine field for a metal is coming mainly from the contact<br>
    term due to the induced spin-polarization by the magnetic field.<br>
<br>
    You should notice, that a field of 9 T is (for theoretical<br>
    calculations) an extremely small field, causing a very small<br>
    spin-splitting of the states near EF, which causes the HFF.<br>
    I suppose all you see is numerical noise.<br>
<br>
    Since only the states at EF are of interest (the field can only<br>
    reoccupy states within a few mRy (or less) around EF), you need to<br>
    converge your calculation with respect to:<br>
<br>
    a) the k-mesh   (test MUCH larger meshes (10000, 50000 100000 k or more)<br>
    b) the magnetic field (increase it and test fields up to 1000 T),<br>
    You are not interested in the absolute number, but in ppm, i.e. the<br>
    relative induced field.<br>
<br>
    c) The angular momentum component of the hFF introduced by<br>
    case.vorbup/dn is NOT correct. I would even suggest that you put l=0 to<br>
    minimize the effect (or use    -orbc  with case.vorbup/dn , where<br>
    all elements are set to zero.)<br>
<br>
    d) In principle the orbital contribution should be obtainable from<br>
    the NMR-module of wien2k_13. However, also there we observed for<br>
    metals that it is very hard to converge with respect to k-mesh and<br>
    the final results (sum of spin and orbital contribution) does not<br>
    seem right, while spin-only has the correct magnitude (within 10% of<br>
    the experiment). This is an unresolved issue for us so far.<br>
<br>
<br>
    Am 07.10.2013 04:01, schrieb Jing-Han Chen:<br>
<br>
        Dear WIEN2k users and authors<br>
<br>
            We are currently working on the hyperfine field calculation<br>
        by using<br>
        ORB package. In fcc aluminum case, we got 0.154 (KGAUSS) when the<br>
        following case.inorb and case.indm are used<br>
<br>
        case.inorb<br>
        3 1 0        nmod, natorb, ipr<br>
        PRATT, 1.0    mixmod, amix<br>
        1 1 0          iatom nlorb, lorb<br>
        9.            Bext in T<br>
        0. 0. 1.    direction of Bext in terms of lattice vectors<br>
<br>
        case.indm<br>
        -9.                      Emin cutoff energy<br>
           1                       number of atoms for which density<br>
        matrix is<br>
        calculated<br>
           1  1  0      index of 1st atom, number of L&#39;s, L1<br>
           0 0           r-index, (l,s)index<br>
<br>
            In order to confirm how the magnetic field is applied for the<br>
        multiple sites crystal, we made aluminum as a simple cubic with 4<br>
        inequivalent sites and we believe it should be physically<br>
        identical to<br>
        fcc. The following case.inorb and case.indm are used.<br>
<br>
        case.inorb<br>
        3 4 0        nmod, natorb, ipr<br>
        PRATT, 1.0    mixmod, amix<br>
        1 1 0          iatom nlorb, lorb<br>
        2 1 0          iatom nlorb, lorb<br>
        3 1 0          iatom nlorb, lorb<br>
        4 1 0          iatom nlorb, lorb<br>
        9.            Bext in T<br>
        0. 0. 1.    direction of Bext in terms of lattice vectors<br>
<br>
        case.indm<br>
        -9.                      Emin cutoff energy<br>
           4                       number of atoms for which density<br>
        matrix is<br>
        calculated<br>
           1  1  0      index of 1st atom, number of L&#39;s, L1<br>
           2  1  0      index of 1st atom, number of L&#39;s, L1<br>
           3  1  0      index of 1st atom, number of L&#39;s, L1<br>
           4  1  0      index of 1st atom, number of L&#39;s, L1<br>
           0 0           r-index, (l,s)index<br>
<br>
            Both fcc and simple cubic are run by the same way (-orb -cc<br>
        0.00001).<br>
        A complete different HFFs are obtained as the following<br>
<br>
        :HFF001:            0.059           0.000           0.001<br>
        0.060 (KGAUSS)<br>
        :HFF002:           -1.193           0.000          -0.010<br>
        -1.204 (KGAUSS)<br>
        :HFF003:            1.681           0.000           0.011<br>
        1.692 (KGAUSS)<br>
        :HFF004:            0.046           0.000           0.001<br>
        0.047 (KGAUSS)<br>
<br>
        We got four different HFFs which we thought they are supposed to<br>
        be the<br>
        same. Also all of them are very far from the fcc result (0.154<br>
        KGAUSS).<br>
        Does anyone know why it happens?<br>
<br>
            Any suggestion and comment are appreciated.<br>
<br>
        --<br>
        Jing-Han Chen<br>
        Graduate Student<br>
        Department of Physics<br>
        Texas A&amp;M University<br>
        4242 TAMU<br>
        College Station TX  77843-4242<br></div></div>
        <a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a> &lt;mailto:<a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a>&gt; &lt;mailto:<a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a><div class="im">
<br>
        &lt;mailto:<a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a>&gt;&gt; &lt;<a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a> &lt;mailto:<a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a>&gt;<br>
</div>
        &lt;mailto:<a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a> &lt;mailto:<a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a>&gt;&gt;&gt; /<br>
        <a href="http://people.physics.tamu." target="_blank">http://people.physics.tamu.</a>__<u></u>edu/jhchen/<br>
        &lt;<a href="http://people.physics.tamu.edu/jhchen/" target="_blank">http://people.physics.tamu.<u></u>edu/jhchen/</a>&gt;<br>
<br>
<br>
<br>
        ______________________________<u></u>___________________<br>
        Wien mailing list<br>
        Wien@zeus.theochem.tuwien.ac._<u></u>_at<br>
        &lt;mailto:<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.<u></u>tuwien.ac.at</a>&gt;<br>
        <a href="http://zeus.theochem.tuwien." target="_blank">http://zeus.theochem.tuwien.</a>__<a href="http://ac.at/mailman/listinfo/wien" target="_blank"><u></u>ac.at/mailman/listinfo/wien</a><div class="im"><br>
        &lt;<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.<u></u>ac.at/mailman/listinfo/wien</a>&gt;<br>
        SEARCH the MAILING-LIST at:<br></div>
        <a href="http://www.mail-archive.com/__wien@zeus.theochem.tuwien.ac.__at/index.html" target="_blank">http://www.mail-archive.com/__<u></u>wien@zeus.theochem.tuwien.ac._<u></u>_at/index.html</a><div class="im"><br>

        &lt;<a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" target="_blank">http://www.mail-archive.com/<u></u>wien@zeus.theochem.tuwien.ac.<u></u>at/index.html</a>&gt;<br>
<br>
<br>
    --<br>
    Peter Blaha<br>
    Inst.Materials Chemistry<br>
    TU Vienna<br>
    Getreidemarkt 9<br>
    A-1060 Vienna<br>
    Austria<br></div>
    <a href="tel:%2B43-1-5880115671" value="+4315880115671" target="_blank">+43-1-5880115671</a> &lt;tel:%2B43-1-5880115671&gt;<br>
    ______________________________<u></u>___________________<br>
    Wien mailing list<br>
    Wien@zeus.theochem.tuwien.ac._<u></u>_at<br>
    &lt;mailto:<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.<u></u>tuwien.ac.at</a>&gt;<br>
    <a href="http://zeus.theochem.tuwien." target="_blank">http://zeus.theochem.tuwien.</a>__<a href="http://ac.at/mailman/listinfo/wien" target="_blank"><u></u>ac.at/mailman/listinfo/wien</a><div class="im"><br>
    &lt;<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.<u></u>ac.at/mailman/listinfo/wien</a>&gt;<br>
    SEARCH the MAILING-LIST at:<br></div>
    <a href="http://www.mail-archive.com/__wien@zeus.theochem.tuwien.ac.__at/index.html" target="_blank">http://www.mail-archive.com/__<u></u>wien@zeus.theochem.tuwien.ac._<u></u>_at/index.html</a><div class="im"><br>
    &lt;<a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" target="_blank">http://www.mail-archive.com/<u></u>wien@zeus.theochem.tuwien.ac.<u></u>at/index.html</a>&gt;<br>
<br>
<br>
<br>
<br>
--<br>
Jing-Han Chen<br>
Graduate Student<br>
Department of Physics<br>
Texas A&amp;M University<br>
4242 TAMU<br>
College Station TX  77843-4242<br>
</div><div class="im"><a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a> &lt;mailto:<a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a>&gt; &lt;<a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a><br>

&lt;mailto:<a href="mailto:jhchen@tamu.edu" target="_blank">jhchen@tamu.edu</a>&gt;&gt; / <a href="http://people.physics.tamu.edu/jhchen/" target="_blank">http://people.physics.tamu.<u></u>edu/jhchen/</a><br>
<br>
<br>
______________________________<u></u>_________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.<u></u>at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.<u></u>ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at:  <a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" target="_blank">http://www.mail-archive.com/<u></u>wien@zeus.theochem.tuwien.ac.<u></u>at/index.html</a><br>
<br>
</div></blockquote><span class="HOEnZb"><font color="#888888">
<br>
-- <br>
<br>
                                      P.Blaha<br>
------------------------------<u></u>------------------------------<u></u>--------------<br>
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna<br>
Phone: <a href="tel:%2B43-1-58801-165300" value="+43158801165300" target="_blank">+43-1-58801-165300</a>             FAX: <a href="tel:%2B43-1-58801-165982" value="+43158801165982" target="_blank">+43-1-58801-165982</a><br>

Email: <a href="mailto:blaha@theochem.tuwien.ac.at" target="_blank">blaha@theochem.tuwien.ac.at</a>    WWW: <a href="http://info.tuwien.ac.at/theochem/" target="_blank">http://info.tuwien.ac.at/<u></u>theochem/</a><br>
------------------------------<u></u>------------------------------<u></u>--------------</font></span><div class="HOEnZb"><div class="h5"><br>
______________________________<u></u>_________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.<u></u>at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.<u></u>ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at:  <a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" target="_blank">http://www.mail-archive.com/<u></u>wien@zeus.theochem.tuwien.ac.<u></u>at/index.html</a><br>
</div></div></blockquote></div><br><br clear="all"><br>-- <br>Jing-Han Chen<br>Graduate Student<br>Department of Physics<br>Texas A&amp;M University<br>4242 TAMU<br>College Station TX  77843-4242<br><a href="mailto:jhchen@tamu.edu">jhchen@tamu.edu</a> &lt;<a href="mailto:jhchen@tamu.edu">jhchen@tamu.edu</a>&gt; / <a href="http://people.physics.tamu.edu/jhchen/">http://people.physics.tamu.edu/jhchen/</a><br>

</div>