<html><head><meta http-equiv="Content-Type" content="text/html charset=us-ascii"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;">Hi,<div><span class="Apple-tab-span" style="white-space:pre">        </span>I have been using the irreducible representations calculated by irrep to determine the parity of the wavefunction for particular k-points for each band. A typical case is shown below for the gamma point. As I am solving the system without spin, each band is at least two-fold degenerate. For most bands, for example the first band, the situation is clear as the irrep is G4+ that the parity is +. This also follows from the character of the (I) class being the same dimension as the irrep. I am a little more confused by what to do a band such as band 9 where there are two irreps spanning the same band, but presumably as the character of the (I) class is the same as that of the dimension of the irrep (and that both irreps are of the same parity, +) that the parity is again +. The situation I am writing to ask about, however is that of band 63 which is four-fold degenerate and is composed of irreps of both parities. How does one interpret the parity from the information below for band 63? Thanks for any advice.</div><div><br></div><div><br></div><div><br></div><div><font face="Courier"><br></font></div><div><div><font face="Courier"> The point group is D3d</font></div><div><font face="Courier"> 12 symmetry operations in 6 classes</font></div><div><font face="Courier"> Table 55 on page 58 in Koster et al [7]</font></div><div><font face="Courier"> Table 42.4 on page 371 in Altmann et al [8]</font></div><div><font face="Courier"><br></font></div><div><font face="Courier"> E 2C3 3C2 I 2IC3 3IC2 </font></div><div><font face="Courier"> G1+ A1g 1 1 1 1 1 1 </font></div><div><font face="Courier"> G2+ A2g 1 1 -1 1 1 -1 </font></div><div><font face="Courier"> G3+ Eg 2 -1 0 2 -1 0 </font></div><div><font face="Courier"> G1- A1u 1 1 1 -1 -1 -1 </font></div><div><font face="Courier"> G2- A2u 1 1 -1 -1 -1 1 </font></div><div><font face="Courier"> G3- Eu 2 -1 0 -2 1 0 </font></div><div><font face="Courier"> --------------------------------------------</font></div><div><font face="Courier"> G4+ E1/2g 2 1 0 2 1 0 </font></div><div><font face="Courier"> G5+ 1E3/2g 1 -1 i 1 -1 i </font></div><div><font face="Courier"> G6+ 2E3/2g 1 -1 -i 1 -1 -i </font></div><div><font face="Courier"> G4- E1/2u 2 1 0 -2 -1 0 </font></div><div><font face="Courier"> G5- 1E3/2u 1 -1 i -1 1 -i </font></div><div><font face="Courier"> G6- 2E3/2u 1 -1 -i -1 1 i </font></div><div><font face="Courier"><br></font></div><div><font face="Courier"><br></font></div><div><font face="Courier">class, symmetry ops, exp(-i*k*taui)</font></div><div><font face="Courier"> E 10 (+1.00+0.00i)</font></div><div><font face="Courier"> 2C3 2 7 (+1.00+0.00i)</font></div><div><font face="Courier"> 3C2 1 8 9 (+1.00+0.00i)</font></div><div><font face="Courier"> I 3 (+1.00+0.00i)</font></div><div><font face="Courier">2IC3 6 11 (+1.00+0.00i)</font></div><div><font face="Courier">3IC2 4 5 12 (+1.00+0.00i)</font></div><div><font face="Courier"><br></font></div><div><font face="Courier">bnd ndg eigval E 2C3 3C2 I 2IC3 3IC2 </font></div><div><font face="Courier"> 1 2 -7.239676 2.00+0.00i 1.00+0.00i 0.00-0.00i 2.00+0.00i 1.00-0.00i 0.00-0.00i =G4+ </font></div><div><font face="Courier"> 3 2 -7.239533 2.00+0.00i 1.00+0.00i -0.00+0.00i -2.00+0.00i -1.00-0.00i 0.00-0.00i =G4- </font></div><div><font face="Courier"> 5 2 -6.641446 2.00+0.00i 1.00+0.00i 0.00+0.00i 2.00-0.00i 1.00+0.00i 0.00+0.00i =G4+ </font></div><div><font face="Courier"> 7 2 -6.641393 2.00-0.00i 1.00-0.00i -0.00-0.00i -2.00-0.00i -1.00+0.00i 0.00-0.00i =G4- </font></div><div><font face="Courier"> 9 2 -6.641277 2.00+0.00i -2.00-0.00i -0.00+0.00i 2.00+0.00i -2.00-0.00i -0.00-0.00i =G5+ + G6+</font></div><div><font face="Courier"><br></font></div><div><font face="Courier"><br></font></div><div><font face="Courier"><br></font></div><div><font face="Courier"> 63 4 -1.880979 4.00-0.00i -4.00+0.00i 0.00-0.00i 0.00-0.00i -0.00+0.00i -0.00+0.00i =G5+ + G6+ + G5- + G6- </font></div><div><font face="Courier"> </font></div></div></body></html>