<div dir="ltr">Hi, <div>Recently, I recompiled WIEN2k_13 with -O3 option. (I used to use  the default option O2). The full compiler option is as follows </div><div><br></div><div>-FR -mp1 -w -prec_div -pc80 -pad -ip -DINTEL_VML -traceback -assume buffered_io -O3</div>
<div><br></div><div><br></div><div>I calculated the band structure of CsTlCl3 in high symmetry structure (struct file is attached at the end of the email). It is surprising to find splitting at  L point and along W-L. After a miserable week, I changed the compiler option back to O2 and now the splitting at L goes away. A copy of the bands structures calculated with O3 and O2 options can be downloaded here <a href="https://www.dropbox.com/s/2xu0mx2z31djns0/testup%20copy.pdf">https://www.dropbox.com/s/2xu0mx2z31djns0/testup%20copy.pdf</a>. </div>
<div><br></div><div><br></div><div><br></div><div><br></div><div><div>Title</div><div>F Â LATTICE,NONEQUIV.ATOMS: Â 4225_Fm-3m</div><div>MODE OF CALC=RELA unit=ang</div><div>Â 20.451758 20.451758 20.451758 90.000000 90.000000 90.000000</div>
<div>ATOM  1: X=0.25000000 Y=0.25000000 Z=0.25000000</div><div>     MULT= 2      ISPLIT= 2</div><div>    1: X=0.75000000 Y=0.75000000 Z=0.75000000</div><div>Cs     NPT=  781  R0=0.00001000 RMT=  2.50000  Z: 55.0</div>
<div>LOCAL ROT MATRIX: Â Â 1.0000000 0.0000000 0.0000000</div><div>Â Â Â Â Â Â Â Â Â Â Â 0.0000000 1.0000000 0.0000000</div><div>Â Â Â Â Â Â Â Â Â Â Â 0.0000000 0.0000000 1.0000000</div><div>ATOM Â 2: X=0.00000000 Y=0.00000000 Z=0.00000000</div>
<div>Â Â Â Â Â MULT= 1 Â Â Â Â Â ISPLIT= 2</div><div>Tl1 Â Â Â Â NPT= Â 781 Â R0=0.00000500 RMT= Â 2.50000 Â Z: 81.0</div><div>LOCAL ROT MATRIX: Â Â 1.0000000 0.0000000 0.0000000</div><div>Â Â Â Â Â Â Â Â Â Â Â 0.0000000 1.0000000 0.0000000</div>
<div>Â Â Â Â Â Â Â Â Â Â Â 0.0000000 0.0000000 1.0000000</div><div>ATOM Â 3: X=0.50000000 Y=0.00000000 Z=0.00000000</div><div>Â Â Â Â Â MULT= 1 Â Â Â Â Â ISPLIT= 2</div><div>Tl2 Â Â Â Â NPT= Â 781 Â R0=0.00000500 RMT= Â 2.50000 Â Z: 81.0</div>
<div>LOCAL ROT MATRIX: Â Â 1.0000000 0.0000000 0.0000000</div><div>Â Â Â Â Â Â Â Â Â Â Â 0.0000000 1.0000000 0.0000000</div><div>Â Â Â Â Â Â Â Â Â Â Â 0.0000000 0.0000000 1.0000000</div><div>ATOM Â -4: X=0.25000000 Y=0.00000000 Z=0.00000000</div>
<div>Â Â Â Â Â MULT= 6 Â Â Â Â Â ISPLIT=-2</div><div>Â Â Â -4: X=0.75000000 Y=0.00000000 Z=0.00000000</div><div>Â Â Â -4: X=0.00000000 Y=0.25000000 Z=0.00000000</div><div>Â Â Â -4: X=0.00000000 Y=0.75000000 Z=0.00000000</div>
<div>   -4: X=0.00000000 Y=0.00000000 Z=0.25000000</div><div>   -4: X=0.00000000 Y=0.00000000 Z=0.75000000</div><div>Cl     NPT=  781  R0=0.00010000 RMT=  2.29    Z: 17.0</div><div>LOCAL ROT MATRIX:   0.0000000 0.0000000 1.0000000</div>
<div>Â Â Â Â Â Â Â Â Â Â Â 0.0000000 1.0000000 0.0000000</div><div>Â Â Â Â Â Â Â Â Â Â -1.0000000 0.0000000 0.0000000</div><div>Â 48 Â Â Â NUMBER OF SYMMETRY OPERATIONS</div><div>Â 1 0 0 0.00000000</div><div>Â 0-1 0 0.00000000</div>
<div>Â 0 0-1 0.00000000</div><div>Â Â Â Â 1</div><div>Â 1 0 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â Â Â Â 2</div><div>-1 0 0 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â 0 0-1 0.00000000</div>
<div>Â Â Â Â 3</div><div>-1 0 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â Â Â Â 4</div><div>Â 0 1 0 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â Â Â Â 5</div>
<div>Â 0 0 1 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â Â Â Â 6</div><div>Â 0 1 0 0.00000000</div><div>Â 1 0 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â Â Â Â 7</div><div>Â 0 0 1 0.00000000</div>
<div>Â 1 0 0 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â Â Â Â 8</div><div>Â 0 1 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â Â Â Â 9</div><div>Â 0 0 1 0.00000000</div><div>Â 0-1 0 0.00000000</div>
<div>-1 0 0 0.00000000</div><div>Â Â Â 10</div><div>Â 0 1 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â 1 0 0 0.00000000</div><div>Â Â Â 11</div><div>Â 0 0 1 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â 1 0 0 0.00000000</div>
<div>Â Â Â 12</div><div>Â 0-1 0 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â Â Â 13</div><div>Â 0-1 0 0.00000000</div><div>Â 1 0 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â Â Â 14</div>
<div>Â 0 0-1 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â Â Â 15</div><div>Â 0 0-1 0.00000000</div><div>Â 1 0 0 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â Â Â 16</div><div>Â 1 0 0 0.00000000</div>
<div>Â 0 1 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â Â Â 17</div><div>-1 0 0 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â Â Â 18</div><div>Â 1 0 0 0.00000000</div><div>Â 0 0 1 0.00000000</div>
<div>Â 0-1 0 0.00000000</div><div>Â Â Â 19</div><div>-1 0 0 0.00000000</div><div>Â 0 0 1 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â Â Â 20</div><div>Â 0-1 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>-1 0 0 0.00000000</div>
<div>Â Â Â 21</div><div>Â 0 0-1 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â Â Â 22</div><div>Â 0-1 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â 1 0 0 0.00000000</div><div>Â Â Â 23</div>
<div>Â 0 0-1 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â 1 0 0 0.00000000</div><div>Â Â Â 24</div><div>Â 0 0 1 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â Â Â 25</div><div>Â 0 1 0 0.00000000</div>
<div>Â 0 0 1 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â Â Â 26</div><div>Â 0 0 1 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>Â 1 0 0 0.00000000</div><div>Â Â Â 27</div><div>Â 0 1 0 0.00000000</div><div>Â 0 0 1 0.00000000</div>
<div>Â 1 0 0 0.00000000</div><div>Â Â Â 28</div><div>Â 1 0 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>Â Â Â 29</div><div>-1 0 0 0.00000000</div><div>Â 0 0-1 0.00000000</div><div>Â 0 1 0 0.00000000</div>
<div>Â Â Â 30</div><div>Â 1 0 0 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â 0 0 1 0.00000000</div><div>Â Â Â 31</div><div>-1 0 0 0.00000000</div><div>Â 0-1 0 0.00000000</div><div>Â 0 0 1 0.00000000</div><div>Â Â Â 32</div>
<div>Â 0 0 1 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>Â Â Â 33</div><div>Â 0 0 1 0.00000000</div><div>Â 1 0 0 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>Â Â Â 34</div><div>Â 0 1 0 0.00000000</div>
<div>-1 0 0 0.00000000</div><div>Â 0 0 1 0.00000000</div><div>Â Â Â 35</div><div>Â 0 1 0 0.00000000</div><div>Â 1 0 0 0.00000000</div><div>Â 0 0 1 0.00000000</div><div>Â Â Â 36</div><div>Â 0 0-1 0.00000000</div><div>Â 0 1 0 0.00000000</div>
<div>-1 0 0 0.00000000</div><div>Â Â Â 37</div><div>Â 0-1 0 0.00000000</div><div>Â 0 0 1 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â Â Â 38</div><div>Â 0 0-1 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>Â 1 0 0 0.00000000</div>
<div>Â Â Â 39</div><div>Â 0-1 0 0.00000000</div><div>Â 0 0 1 0.00000000</div><div>Â 1 0 0 0.00000000</div><div>Â Â Â 40</div><div>Â 0 0-1 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>Â Â Â 41</div>
<div>Â 0-1 0 0.00000000</div><div>-1 0 0 0.00000000</div><div>Â 0 0 1 0.00000000</div><div>Â Â Â 42</div><div>Â 0 0-1 0.00000000</div><div>Â 1 0 0 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>Â Â Â 43</div><div>Â 0-1 0 0.00000000</div>
<div>Â 1 0 0 0.00000000</div><div>Â 0 0 1 0.00000000</div><div>Â Â Â 44</div><div>Â 1 0 0 0.00000000</div><div>Â 0 0 1 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>Â Â Â 45</div><div>Â 1 0 0 0.00000000</div><div>Â 0 1 0 0.00000000</div>
<div>Â 0 0 1 0.00000000</div><div>Â Â Â 46</div><div>-1 0 0 0.00000000</div><div>Â 0 0 1 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>Â Â Â 47</div><div>-1 0 0 0.00000000</div><div>Â 0 1 0 0.00000000</div><div>Â 0 0 1 0.00000000</div>
<div>Â Â Â 48</div></div></div>