<div dir="ltr">Hi, <div>Recently, I recompiled WIEN2k_13 with -O3 option. (I used to use the default option O2). The full compiler option is as follows </div><div><br></div><div>-FR -mp1 -w -prec_div -pc80 -pad -ip -DINTEL_VML -traceback -assume buffered_io -O3</div>
<div><br></div><div><br></div><div>I calculated the band structure of CsTlCl3 in high symmetry structure (struct file is attached at the end of the email). It is surprising to find splitting at L point and along W-L. After a miserable week, I changed the compiler option back to O2 and now the splitting at L goes away. A copy of the bands structures calculated with O3 and O2 options can be downloaded here <a href="https://www.dropbox.com/s/2xu0mx2z31djns0/testup%20copy.pdf">https://www.dropbox.com/s/2xu0mx2z31djns0/testup%20copy.pdf</a>. </div>
<div><br></div><div><br></div><div><br></div><div><br></div><div><div>Title</div><div>F LATTICE,NONEQUIV.ATOMS: 4225_Fm-3m</div><div>MODE OF CALC=RELA unit=ang</div><div> 20.451758 20.451758 20.451758 90.000000 90.000000 90.000000</div>
<div>ATOM 1: X=0.25000000 Y=0.25000000 Z=0.25000000</div><div> MULT= 2 ISPLIT= 2</div><div> 1: X=0.75000000 Y=0.75000000 Z=0.75000000</div><div>Cs NPT= 781 R0=0.00001000 RMT= 2.50000 Z: 55.0</div>
<div>LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000</div><div> 0.0000000 1.0000000 0.0000000</div><div> 0.0000000 0.0000000 1.0000000</div><div>ATOM 2: X=0.00000000 Y=0.00000000 Z=0.00000000</div>
<div> MULT= 1 ISPLIT= 2</div><div>Tl1 NPT= 781 R0=0.00000500 RMT= 2.50000 Z: 81.0</div><div>LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000</div><div> 0.0000000 1.0000000 0.0000000</div>
<div> 0.0000000 0.0000000 1.0000000</div><div>ATOM 3: X=0.50000000 Y=0.00000000 Z=0.00000000</div><div> MULT= 1 ISPLIT= 2</div><div>Tl2 NPT= 781 R0=0.00000500 RMT= 2.50000 Z: 81.0</div>
<div>LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000</div><div> 0.0000000 1.0000000 0.0000000</div><div> 0.0000000 0.0000000 1.0000000</div><div>ATOM -4: X=0.25000000 Y=0.00000000 Z=0.00000000</div>
<div> MULT= 6 ISPLIT=-2</div><div> -4: X=0.75000000 Y=0.00000000 Z=0.00000000</div><div> -4: X=0.00000000 Y=0.25000000 Z=0.00000000</div><div> -4: X=0.00000000 Y=0.75000000 Z=0.00000000</div>
<div> -4: X=0.00000000 Y=0.00000000 Z=0.25000000</div><div> -4: X=0.00000000 Y=0.00000000 Z=0.75000000</div><div>Cl NPT= 781 R0=0.00010000 RMT= 2.29 Z: 17.0</div><div>LOCAL ROT MATRIX: 0.0000000 0.0000000 1.0000000</div>
<div> 0.0000000 1.0000000 0.0000000</div><div> -1.0000000 0.0000000 0.0000000</div><div> 48 NUMBER OF SYMMETRY OPERATIONS</div><div> 1 0 0 0.00000000</div><div> 0-1 0 0.00000000</div>
<div> 0 0-1 0.00000000</div><div> 1</div><div> 1 0 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 0-1 0 0.00000000</div><div> 2</div><div>-1 0 0 0.00000000</div><div> 0-1 0 0.00000000</div><div> 0 0-1 0.00000000</div>
<div> 3</div><div>-1 0 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 0-1 0 0.00000000</div><div> 4</div><div> 0 1 0 0.00000000</div><div>-1 0 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 5</div>
<div> 0 0 1 0.00000000</div><div>-1 0 0 0.00000000</div><div> 0-1 0 0.00000000</div><div> 6</div><div> 0 1 0 0.00000000</div><div> 1 0 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 7</div><div> 0 0 1 0.00000000</div>
<div> 1 0 0 0.00000000</div><div> 0-1 0 0.00000000</div><div> 8</div><div> 0 1 0 0.00000000</div><div> 0 0-1 0.00000000</div><div>-1 0 0 0.00000000</div><div> 9</div><div> 0 0 1 0.00000000</div><div> 0-1 0 0.00000000</div>
<div>-1 0 0 0.00000000</div><div> 10</div><div> 0 1 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 1 0 0 0.00000000</div><div> 11</div><div> 0 0 1 0.00000000</div><div> 0-1 0 0.00000000</div><div> 1 0 0 0.00000000</div>
<div> 12</div><div> 0-1 0 0.00000000</div><div>-1 0 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 13</div><div> 0-1 0 0.00000000</div><div> 1 0 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 14</div>
<div> 0 0-1 0.00000000</div><div>-1 0 0 0.00000000</div><div> 0-1 0 0.00000000</div><div> 15</div><div> 0 0-1 0.00000000</div><div> 1 0 0 0.00000000</div><div> 0-1 0 0.00000000</div><div> 16</div><div> 1 0 0 0.00000000</div>
<div> 0 1 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 17</div><div>-1 0 0 0.00000000</div><div> 0 1 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 18</div><div> 1 0 0 0.00000000</div><div> 0 0 1 0.00000000</div>
<div> 0-1 0 0.00000000</div><div> 19</div><div>-1 0 0 0.00000000</div><div> 0 0 1 0.00000000</div><div> 0-1 0 0.00000000</div><div> 20</div><div> 0-1 0 0.00000000</div><div> 0 0-1 0.00000000</div><div>-1 0 0 0.00000000</div>
<div> 21</div><div> 0 0-1 0.00000000</div><div> 0-1 0 0.00000000</div><div>-1 0 0 0.00000000</div><div> 22</div><div> 0-1 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 1 0 0 0.00000000</div><div> 23</div>
<div> 0 0-1 0.00000000</div><div> 0-1 0 0.00000000</div><div> 1 0 0 0.00000000</div><div> 24</div><div> 0 0 1 0.00000000</div><div> 0 1 0 0.00000000</div><div>-1 0 0 0.00000000</div><div> 25</div><div> 0 1 0 0.00000000</div>
<div> 0 0 1 0.00000000</div><div>-1 0 0 0.00000000</div><div> 26</div><div> 0 0 1 0.00000000</div><div> 0 1 0 0.00000000</div><div> 1 0 0 0.00000000</div><div> 27</div><div> 0 1 0 0.00000000</div><div> 0 0 1 0.00000000</div>
<div> 1 0 0 0.00000000</div><div> 28</div><div> 1 0 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 0 1 0 0.00000000</div><div> 29</div><div>-1 0 0 0.00000000</div><div> 0 0-1 0.00000000</div><div> 0 1 0 0.00000000</div>
<div> 30</div><div> 1 0 0 0.00000000</div><div> 0-1 0 0.00000000</div><div> 0 0 1 0.00000000</div><div> 31</div><div>-1 0 0 0.00000000</div><div> 0-1 0 0.00000000</div><div> 0 0 1 0.00000000</div><div> 32</div>
<div> 0 0 1 0.00000000</div><div>-1 0 0 0.00000000</div><div> 0 1 0 0.00000000</div><div> 33</div><div> 0 0 1 0.00000000</div><div> 1 0 0 0.00000000</div><div> 0 1 0 0.00000000</div><div> 34</div><div> 0 1 0 0.00000000</div>
<div>-1 0 0 0.00000000</div><div> 0 0 1 0.00000000</div><div> 35</div><div> 0 1 0 0.00000000</div><div> 1 0 0 0.00000000</div><div> 0 0 1 0.00000000</div><div> 36</div><div> 0 0-1 0.00000000</div><div> 0 1 0 0.00000000</div>
<div>-1 0 0 0.00000000</div><div> 37</div><div> 0-1 0 0.00000000</div><div> 0 0 1 0.00000000</div><div>-1 0 0 0.00000000</div><div> 38</div><div> 0 0-1 0.00000000</div><div> 0 1 0 0.00000000</div><div> 1 0 0 0.00000000</div>
<div> 39</div><div> 0-1 0 0.00000000</div><div> 0 0 1 0.00000000</div><div> 1 0 0 0.00000000</div><div> 40</div><div> 0 0-1 0.00000000</div><div>-1 0 0 0.00000000</div><div> 0 1 0 0.00000000</div><div> 41</div>
<div> 0-1 0 0.00000000</div><div>-1 0 0 0.00000000</div><div> 0 0 1 0.00000000</div><div> 42</div><div> 0 0-1 0.00000000</div><div> 1 0 0 0.00000000</div><div> 0 1 0 0.00000000</div><div> 43</div><div> 0-1 0 0.00000000</div>
<div> 1 0 0 0.00000000</div><div> 0 0 1 0.00000000</div><div> 44</div><div> 1 0 0 0.00000000</div><div> 0 0 1 0.00000000</div><div> 0 1 0 0.00000000</div><div> 45</div><div> 1 0 0 0.00000000</div><div> 0 1 0 0.00000000</div>
<div> 0 0 1 0.00000000</div><div> 46</div><div>-1 0 0 0.00000000</div><div> 0 0 1 0.00000000</div><div> 0 1 0 0.00000000</div><div> 47</div><div>-1 0 0 0.00000000</div><div> 0 1 0 0.00000000</div><div> 0 0 1 0.00000000</div>
<div> 48</div></div></div>