<div dir="ltr"><div>I'm very sorry to bother your again. </div>
<div> Two question:</div>
<div>1. For a system with SOC effect, can I get clean spin contribution
by using lapwdm (alpha and beta), since the the orbital can be hard to
distinguishe from spin with SOC included. For a system with no SOC, I
can forget the orbital moments since the spin texture <ψ|σ|ψ> can
be calculated using the spin orperater σ alone and the orbital moments
is <span>irrelevant</span> .</div>
2. If I can not get clean spin contribution, I'll have to write
down the wavefunction directily and perform <ψ|σ|ψ> by myself. In
this case, I'm still confused where I can get the radial wavefunction
ul(r,E2,l) file?</div><div class="gmail_extra"><br><div class="gmail_quote">2014-11-25 4:08 GMT+08:00 Peter Blaha <span dir="ltr"><<a href="mailto:pblaha@theochem.tuwien.ac.at" target="_blank">pblaha@theochem.tuwien.ac.at</a>></span>:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">As I said before: lapwdm can do the job.<br>
<br>
What I called spin-up/dn partial charges are the products<br>
alpha*alpha and beta*beta, and their difference is Pz.<br>
<br>
The cross-terms, leading to Px and Py are not listed individually, but<br>
they are calculated in lapwdm, but in the output (scfdmup) summed up<br>
over all states (and k-points).<br>
<br>
This was what I already sent before: if you really want it for every state,<br>
you need to run 1 k-point (lapw1 -up/dn; lapwso -up; lapw2 -so -up/dn -all emin emax;<br>
lapwdm -up -so<br>
<br>
and emin/emax should be set such that only ONE state at the time is occupied.<br>
<br>
The case.scfdmup file has the info under the label :SPIN<br>
<br>
(but can you really forget the orbital moments ... ?? :ORB )<br>
<br>
<br>
Am 24.11.2014 14:37, schrieb Fecher, Gerhard:<div><div class="h5"><br>
<blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
I guess you are searching for the x and y components of the spin polarisation because usually only the z-component<br>
Pz = alpha alpha* - beta beta*<br>
is given (alpha, beta being the "up" and "down" components of a 2 component spinor, * means conjugate complex)<br>
the remaining two components (x and y-component) are<br>
Px = 2 Re(alpha beta*) (Re = real part)<br>
Py = -2 Im(alpha beta*) (Im =imaginary part)<br>
<br>
it assumed that alpha beta are normalized to alpha alpha* + beta beta* = 1, otherwise you need to divide for normalization.<br>
<br>
For wave functions that arise from a coherent superposition of spinors you should have Px^2 + Py^2 + Pz^2 = P = 1<br>
but not for an incoherent superposition of spinors (e.g. two spaghetti are crossing), then P may be lower than 1.<br>
<br>
if Pz is calculated somewhere in a subroutine, then it should be possible to calculate Px and Py<br>
<br>
maybe this helps you or Peter to localize the place (subroutine) to look for to answer your request.<br>
<br>
Problems will appear with the above definition if the "small" coponent of a 4 component Dirac spinor is large compared to the "large component"<br>
<br>
An old but still very good source about spin polarization is the book of J. Kessler "Polarized Electrons" (1976) from Springer (may be it is sold out but still available online).<br>
<br>
Ciao<br>
Gerhard<br>
<br>
DEEP THOUGHT in D. Adams; Hitchhikers Guide to the Galaxy:<br>
"I think the problem, to be quite honest with you,<br>
is that you have never actually known what the question is."<br>
<br>
==============================<u></u>======<br>
Dr. Gerhard H. Fecher<br>
Institut of Inorganic and Analytical Chemistry<br>
Johannes Gutenberg - University<br>
55099 Mainz<br>
and<br>
Max Planck Institute for Chemical Physics of Solids<br>
01187 Dresden<br>
______________________________<u></u>__________<br>
Von: <a href="mailto:wien-bounces@zeus.theochem.tuwien.ac.at" target="_blank">wien-bounces@zeus.theochem.<u></u>tuwien.ac.at</a> [<a href="mailto:wien-bounces@zeus.theochem.tuwien.ac.at" target="_blank">wien-bounces@zeus.theochem.<u></u>tuwien.ac.at</a>] im Auftrag von huimei liu [<a href="mailto:wwillforever@gmail.com" target="_blank">wwillforever@gmail.com</a>]<br>
Gesendet: Montag, 24. November 2014 13:18<br>
An: A Mailing list for WIEN2k users<br>
Betreff: Re: [Wien] Fwd:<br>
<br>
If so, where can I get ul(r,E2,l) file?<br>
Is there any output files that can directily tell me <ψ|σ|ψ> ?<br>
Thank you very much!<br>
<br>
2014-11-24 17:20 GMT+08:00 Peter Blaha <<a href="mailto:pblaha@theochem.tuwien.ac.at" target="_blank">pblaha@theochem.tuwien.ac.at</a><<u></u>mailto:<a href="mailto:pblaha@theochem.tuwien.ac.at" target="_blank">pblaha@theochem.tuwien.<u></u>ac.at</a>>>:<br>
The error depends on how large the Blm component is. Usually it should be SMALL and therefore for an qualitative analysis negligible.<br>
<br>
However, there could be local orbitals and "Clm"s in certain cases, which could lead to errors of 100 %.<br>
<br>
<br>
On 11/24/2014 10:00 AM, huimei liu wrote:<br>
<br>
Dear Wien2k designers and users:<br>
It seems I want more than the spin-up and dn contribution for a state.<br>
I 'd like to draw the spin texture.<br>
<br>
I want to calculate the spin direction for a state (k-point +<br>
band-index) using the formalism <ψ|σ|ψ> to evaluate the x,y and z<br>
component of spin. Since I can get the Alm and Blm of the Wave function<br>
:ψ can be written as the sum of [Alm*ul(r)+Blm*ul'(r)]Ylm. Here is the<br>
question, if I use Alm only to calculate <ψ|σ|ψ>, can I get the close<br>
answer? Or can anyone tell me the margin of error of using Alm only<br>
compared with using Alm and Blm toghther.<br>
<br>
<br>
<br>
______________________________<u></u>_________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.<u></u>at</a><mailto:<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.<u></u>tuwien.ac.at</a>><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.<u></u>ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at: <a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" target="_blank">http://www.mail-archive.com/<u></u>wien@zeus.theochem.tuwien.ac.<u></u>at/index.html</a><br>
<br>
<br>
--<br>
<br>
P.Blaha<br>
------------------------------<u></u>------------------------------<u></u>--------------<br>
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna<br>
Phone: +43-1-58801-165300 FAX: +43-1-58801-165982<br>
Email: <a href="mailto:blaha@theochem.tuwien.ac.at" target="_blank">blaha@theochem.tuwien.ac.at</a><<u></u>mailto:<a href="mailto:blaha@theochem.tuwien.ac.at" target="_blank">blaha@theochem.tuwien.<u></u>ac.at</a>> WIEN2k: <a href="http://www.wien2k.at" target="_blank">http://www.wien2k.at</a><br>
WWW: <a href="http://www.imc.tuwien.ac.at/staff/tc_group_e.php" target="_blank">http://www.imc.tuwien.ac.at/<u></u>staff/tc_group_e.php</a><br>
------------------------------<u></u>------------------------------<u></u>--------------<br>
______________________________<u></u>_________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.<u></u>at</a><mailto:<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.<u></u>tuwien.ac.at</a>><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.<u></u>ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at: <a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" target="_blank">http://www.mail-archive.com/<u></u>wien@zeus.theochem.tuwien.ac.<u></u>at/index.html</a><br>
<br>
______________________________<u></u>_________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.<u></u>at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.<u></u>ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at: <a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" target="_blank">http://www.mail-archive.com/<u></u>wien@zeus.theochem.tuwien.ac.<u></u>at/index.html</a><br>
<br>
</blockquote>
<br></div></div><span class="">
-- <br>
------------------------------<u></u>-----------<br>
Peter Blaha<br>
Inst. Materials Chemistry, TU Vienna<br>
Getreidemarkt 9, A-1060 Vienna, Austria<br>
Tel: +43-1-5880115671<br>
Fax: +43-1-5880115698<br>
email: <a href="mailto:pblaha@theochem.tuwien.ac.at" target="_blank">pblaha@theochem.tuwien.ac.at</a><br></span>
------------------------------<u></u>-----------<div class="HOEnZb"><div class="h5"><br>
______________________________<u></u>_________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.<u></u>at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.<u></u>ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at: <a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" target="_blank">http://www.mail-archive.com/<u></u>wien@zeus.theochem.tuwien.ac.<u></u>at/index.html</a><br>
</div></div></blockquote></div><br></div>