<html>
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <br>
    <blockquote
cite="mid:CA+9d70U7mnKy__+3gZEWHd_q5=SxxeKdEEqQe1F+g1sKXSXssg@mail.gmail.com"
      type="cite">
      <div dir="ltr">
        <div>Many thanks for your guidance. Actually my system has
          magnetic (2) and non-magnetic (3) species. As B_ext. means we
          are apply magnetic field on the whole system then why do we
          need to select <span style="font-family:courier,'courier new',monospace;font-size:14px;line-height:19.6000003814697px;white-space:pre-wrap">natorb</span> =
          2 ?</div>
      </div>
    </blockquote>
    <br>
    <font color="#000099">Bext is applied to the iatoms (i.e., <font
        color="#006600">in atomic spheres</font>) that you specify in
      case.inorb.  The program searches for  file case.vorbup, if it
       finds it, Bext energy is add to Vxc <font color="#006600">in
        atomic spheres</font> and in interstitial region [
      <a class="moz-txt-link-freetext" href="http://www.wien2k.at/reg_user/textbooks/orbital_potentials.pdf">http://www.wien2k.at/reg_user/textbooks/orbital_potentials.pdf</a>
      (section "4.1 LAPW0 package" on page 6)]. </font><br>
    <br>
    <blockquote
cite="mid:CA+9d70U7mnKy__+3gZEWHd_q5=SxxeKdEEqQe1F+g1sKXSXssg@mail.gmail.com"
      type="cite">
      <div dir="ltr">
        <div>Secondly could you please clarify to me about "<span
            style="color:rgb(0,0,153);font-size:12.8000001907349px">adjusting
            the "direction of Bext in terms of lattice vectors" line in
            case.inorb.</span><font style="font-size:12.8000001907349px"
            color="#000000"><font color="#000099"> </font></font>". Any
          example please or guidance that how to make it.</div>
      </div>
    </blockquote>
    <br>
    <font color="#000099">For example, <br>
      <br>
      y = x*tan(theta) = 1*tan(32 degrees) =  <font color="#006600">0.62487</font>
      [ <a class="moz-txt-link-freetext" href="https://en.wikipedia.org/wiki/Trigonometry">https://en.wikipedia.org/wiki/Trigonometry</a> ]<br>
      <br>
      Consider a cubic lattice with the "direction of Bext in terms of
      lattice vectors" set to:<br>
      <br>
      1 <font color="#006600">0.62487</font> 0<br>
      <br>
      Calculation of the angle between vector (1,0,0) and vector (</font><font
      color="#000099"><font color="#000099">1,0.62487,0</font>) with
      octave:<br>
      <br>
      username@computername:~/wiendata/case$ octave<br>
      octave:1> a=[1 0 0]<br>
      a =                                                      <br>
         1   0   0                                             <br>
      octave:2> b=[1 0.62487 0]                          <br>
      b =                                                      <br>
         1.00000   0.62487   0.00000 <br>
      octave:3> angle_rad=acos(dot(a,b)/(norm(a)*norm(b)))     <br>
      angle_rad =  0.55851                                     <br>
      octave:4> angle_deg=angle_rad*180/pi <br>
      angle_deg =  32.000<br>
    </font><br>
    <font color="#000099">This gives an angle of 32 degrees with respect
      to the (100) axis.<br>
      <br>
      Reference:
      <a class="moz-txt-link-freetext" href="http://www.mathworks.com/matlabcentral/newsreader/view_thread/151925">http://www.mathworks.com/matlabcentral/newsreader/view_thread/151925</a><br>
    </font><br>
    <img src="cid:part1.02070908.02000808@crimson.ua.edu" alt=""><br>
    <br>
    <br>
  </body>
</html>