<html>
<head>
<meta content="text/html; charset=windows-1252"
http-equiv="Content-Type">
</head>
<body bgcolor="#FFFFFF" text="#000000">
<br>
<blockquote
cite="mid:CA+9d70U7mnKy__+3gZEWHd_q5=SxxeKdEEqQe1F+g1sKXSXssg@mail.gmail.com"
type="cite">
<div dir="ltr">
<div>Many thanks for your guidance. Actually my system has
magnetic (2) and non-magnetic (3) species. As B_ext. means we
are apply magnetic field on the whole system then why do we
need to select <span style="font-family:courier,'courier new',monospace;font-size:14px;line-height:19.6000003814697px;white-space:pre-wrap">natorb</span> =
2 ?</div>
</div>
</blockquote>
<br>
<font color="#000099">Bext is applied to the iatoms (i.e., <font
color="#006600">in atomic spheres</font>) that you specify in
case.inorb. The program searches for file case.vorbup, if it
finds it, Bext energy is add to Vxc <font color="#006600">in
atomic spheres</font> and in interstitial region [
<a class="moz-txt-link-freetext" href="http://www.wien2k.at/reg_user/textbooks/orbital_potentials.pdf">http://www.wien2k.at/reg_user/textbooks/orbital_potentials.pdf</a>
(section "4.1 LAPW0 package" on page 6)]. </font><br>
<br>
<blockquote
cite="mid:CA+9d70U7mnKy__+3gZEWHd_q5=SxxeKdEEqQe1F+g1sKXSXssg@mail.gmail.com"
type="cite">
<div dir="ltr">
<div>Secondly could you please clarify to me about "<span
style="color:rgb(0,0,153);font-size:12.8000001907349px">adjusting
the "direction of Bext in terms of lattice vectors" line in
case.inorb.</span><font style="font-size:12.8000001907349px"
color="#000000"><font color="#000099"> </font></font>". Any
example please or guidance that how to make it.</div>
</div>
</blockquote>
<br>
<font color="#000099">For example, <br>
<br>
y = x*tan(theta) = 1*tan(32 degrees) = <font color="#006600">0.62487</font>
[ <a class="moz-txt-link-freetext" href="https://en.wikipedia.org/wiki/Trigonometry">https://en.wikipedia.org/wiki/Trigonometry</a> ]<br>
<br>
Consider a cubic lattice with the "direction of Bext in terms of
lattice vectors" set to:<br>
<br>
1 <font color="#006600">0.62487</font> 0<br>
<br>
Calculation of the angle between vector (1,0,0) and vector (</font><font
color="#000099"><font color="#000099">1,0.62487,0</font>) with
octave:<br>
<br>
username@computername:~/wiendata/case$ octave<br>
octave:1> a=[1 0 0]<br>
a = <br>
1 0 0 <br>
octave:2> b=[1 0.62487 0] <br>
b = <br>
1.00000 0.62487 0.00000 <br>
octave:3> angle_rad=acos(dot(a,b)/(norm(a)*norm(b))) <br>
angle_rad = 0.55851 <br>
octave:4> angle_deg=angle_rad*180/pi <br>
angle_deg = 32.000<br>
</font><br>
<font color="#000099">This gives an angle of 32 degrees with respect
to the (100) axis.<br>
<br>
Reference:
<a class="moz-txt-link-freetext" href="http://www.mathworks.com/matlabcentral/newsreader/view_thread/151925">http://www.mathworks.com/matlabcentral/newsreader/view_thread/151925</a><br>
</font><br>
<img src="cid:part1.02070908.02000808@crimson.ua.edu" alt=""><br>
<br>
<br>
</body>
</html>