<div dir="ltr">Dear Prof. Stefaan and Blaha<div>Thank you for your reply. </div><div>Actually I have to reduce separation energy to -8.5 Ry because core leakage issue was appearing with Ge.</div><div><br></div><div>If I focus on Co, the useful information is:</div><div><br></div><div><b>Magnetic moment </b></div><div>
        
        
        


<p>     VASP                    WIEN2K</p>
<p>Co1         2.530                :MMI001:      =    2.35929
</p>
<p>Co2        -2.530               :MMI002:      =   -2.35900</p><p><b>Core states </b><br></p><p>    VASP                                                                              WIEN2K</p><p>VRHFIN = Co: d8 s1                                                             E-up(Ry)             E-dn(Ry)             Occupancy         q/sphere              core-state</p><p>                                                                          1S             -557.761897      -557.761629           1.00  1.00               1.0000                T</p><p>                                                                          2S             -66.048914         -65.934880            1.00  1.00               1.0000                T</p><p>                                                                          2P*             -57.314278        -57.228799            1.00  1.00               1.0000                T</p><p>                                                                          2P              -56.225866         -56.137902            2.00  2.00               1.0000                T</p><p>                                                                          3S              -7.605100           -7.363843              1.00  1.00               0.9968                 F</p><p>                                                                          3P*             -5.003328           -4.767091              1.00  1.00               0.9917                 F</p><p>                                                                          3P              -4.866118           -4.631354               2.00  2.00               0.9909                F</p><p>                                                                          3D*             -0.699000          -0.490964               2.00  2.00                0.8948                F</p><p>                                                                         3D               -0.684578          -0.477338               3.00  0.00                0.9053                F</p><p>                                                                         4S               -0.423921          -0.381223               1.00  1.00                 0.1768                F</p><p><br></p><p>If I use -6 Ry as the separation energy then core states are</p><p>                                                                        E-up(Ry)             E-dn(Ry)             Occupancy         q/sphere              core-state</p><p>                                                                          1S             -557.761897      -557.761629           1.00  1.00               1.0000                T</p><p>                                                                          2S             -66.048914         -65.934880            1.00  1.00               1.0000                T</p><p>                                                                          2P*             -57.314278        -57.228799            1.00  1.00               1.0000                T</p><p>                                                                          2P              -56.225866         -56.137902            2.00  2.00               1.0000                T</p><p>                                                                          3S              -7.605100           -7.363843              1.00  1.00               0.9968                 T</p><p>                                                                          3P*             -5.003328           -4.767091              1.00  1.00               0.9917                 F</p><p>                                                                          3P              -4.866118           -4.631354               2.00  2.00               0.9909                F</p><p>                                                                          3D*             -0.699000          -0.490964               2.00  2.00                0.8948                F</p><p>                                                                         3D               -0.684578          -0.477338               3.00  0.00                0.9053                F</p><p>                                                                         4S               -0.423921          -0.381223               1.00  1.00                 0.1768                F</p><p>According to my understanding, core-state with tag F are valence states. AM I right? If yes then why it is taking 3P states as valence states? The valence electrons for Co are 3d7, 4s2.</p><p>Kind Regards</p></div></div><div class="gmail_extra"><br><div class="gmail_quote">On Mon, Sep 14, 2015 at 5:16 PM, Peter Blaha <span dir="ltr"><<a href="mailto:pblaha@theochem.tuwien.ac.at" target="_blank">pblaha@theochem.tuwien.ac.at</a>></span> wrote:<br><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">And of course, make sure that the same DFT functionals are used (not comparing DFT+U and DFT alone. This could explain the differences on Co.<br>
<br>
PS: In addition, I'd make sure that the basic "electronic structure" is identical (magnetic moments, DOS, bands, ...)<span class=""><br>
<br>
On 09/14/2015 04:07 PM, Stefaan Cottenier wrote:<br>
</span><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span class="">
<br>
First guess (assuming everything is numerically converged): do you<br>
consider the same electrons as valence electrons both in vasp and wien2k<br>
? It could happen that a 'semicore' state is taken as valence in wien2k<br>
and core in vasp. As long as the EFG contribution of these states are<br>
small, wien2k and vasp will show no differences. But if you hit a<br>
crystal structure where these states have a larger EFG contribution,<br>
then the differences will show up.<br>
<br>
You can find out whether or not this is the case by (1) explicitly<br>
taking the same core/valence assignment in both codes, or (2) examining<br>
the contribution to the EFG of all different oribitals (or regions of<br>
the DOS). See <a href="http://www.wien2k.at/reg_user/faq/efg2.pdf" rel="noreferrer" target="_blank">http://www.wien2k.at/reg_user/faq/efg2.pdf</a> (top of page 9)<br>
for the procedure to follow in wien2k.<br>
<br>
No warranty, just a guess...<br>
<br>
Stefaan<br>
<br>
<br>
Op 14/09/2015 om 15:53 schreef Muhammad Sajjad:<br>
</span><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex"><span class="">
Dear Users<br>
<br>
I run some test calculations for EFG values for different compounds<br>
(Sc2O3, In, SmCo5). Their EFG values (computed with VASP) are in<br>
agreement with that of previous values. Then I computed the EFG values<br>
with WIEN2K and are in strong agreement with previous as well as VASP<br>
values.<br>
<br>
<br>
But the EFG values for anti-ferromagnetic Ba2CoGe2O7 do not agree with<br>
that of VASP values (no previous study available). Actually for Ge and<br></span>
O they agree *but for Co and Ba WIEN2K computed values are almost<br>
double*. Could you please guide me where the problem is? I am drawing<span class=""><br>
a table containing the EFG values and also attaching the structure file.<br>
<br>
WIEN2K calculated values<br>
<br>
        <br>
<br>
VASP calculated values<br>
<br></span>
             V_zz (V/m^2 )<span class=""><br>
<br>
Co1             13.22<br>
<br>
Co2             13.20<br>
<br>
Ba              -15.02<br>
<br>
Ge               7.49<br>
<br>
O1               9.32<br>
<br>
O2               9.93<br>
<br>
O3               9.42<br>
<br>
        <br>
<br></span>
                  V_zz (V/m^2 )<div><div class="h5"><br>
<br>
Co1                 5.97<br>
<br>
Co2                 5.97<br>
<br>
Ba                  -8.55<br>
<br>
Ge                   7.54<br>
<br>
O1                   9.73<br>
<br>
O2                 10.35<br>
<br>
O3                 9.00<br>
<br>
<br>
<br>
<br>
Kind Regards<br>
Muhammad Sajjad<br>
Post Doctoral Fellow<br>
KAUST, KSA.<br>
<br>
<br>
_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" rel="noreferrer" target="_blank">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at:<a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" rel="noreferrer" target="_blank">http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</a><br>
</div></div></blockquote><div><div class="h5">
<br>
--<br>
Stefaan Cottenier<br>
Center for Molecular Modeling (CMM) &<br>
Department of Materials Science and Engineering (DMSE)<br>
Ghent University<br>
Technologiepark 903<br>
BE-9052 Zwijnaarde<br>
Belgium<br>
<br>
<a href="http://molmod.ugent.be" rel="noreferrer" target="_blank">http://molmod.ugent.be</a><br>
<a href="http://www.ugent.be/ea/dmse/en" rel="noreferrer" target="_blank">http://www.ugent.be/ea/dmse/en</a><br>
<a href="mailto:email%3Astefaan.cottenier@ugent.be" target="_blank">email:stefaan.cottenier@ugent.be</a><br>
<br>
my conference talks on Youtube:<a href="http://goo.gl/P2b1Hs" rel="noreferrer" target="_blank">http://goo.gl/P2b1Hs</a><br>
<br>
<br>
<br>
_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" rel="noreferrer" target="_blank">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at:  <a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" rel="noreferrer" target="_blank">http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</a><br>
<br>
</div></div></blockquote><span class="HOEnZb"><font color="#888888">
<br>
-- <br>
<br>
                                      P.Blaha<br>
--------------------------------------------------------------------------<br>
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna<br>
Phone: +43-1-58801-165300             FAX: +43-1-58801-165982<br>
Email: <a href="mailto:blaha@theochem.tuwien.ac.at" target="_blank">blaha@theochem.tuwien.ac.at</a>    WIEN2k: <a href="http://www.wien2k.at" rel="noreferrer" target="_blank">http://www.wien2k.at</a><br>
WWW:   <a href="http://www.imc.tuwien.ac.at/staff/tc_group_e.php" rel="noreferrer" target="_blank">http://www.imc.tuwien.ac.at/staff/tc_group_e.php</a><br>
--------------------------------------------------------------------------</font></span><div class="HOEnZb"><div class="h5"><br>
_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" rel="noreferrer" target="_blank">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at:  <a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" rel="noreferrer" target="_blank">http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</a><br>
</div></div></blockquote></div><br><br clear="all"><div><br></div>-- <br><div class="gmail_signature"><div dir="ltr"><div>Kind Regards</div><div>Muhammad Sajjad </div><div>Post Doctoral Fellow</div><div>KAUST, KSA.</div></div></div>
</div>