<html><body><p>Dear Martin and Gerhard, </p><p>Thank you for your 
suggestions. Gerhard, thank you for mentioning this <br></p><p>experimental 
work. Will you please send me the pdf <br></p><p>of the article? I do not
 have access to it. </p><p>Regarding Martin's questions: </p><p>I tried 
to include magnetism </p><p>of the constituents by performing spin 
polarized calculations, too, </p><p>but the equilbrium volume was the 
same. The forces within the hexagonal unit cell </p><p>were not given in 
case.scf (I think there was too much symmetry operations).</p><p>However, I 
recently tried to express the hexagonal unit cell in a orthorhombic 
base </p><p>and cancel the symmetry operations by using inequivalent 
atoms </p><p>(I send the structure file in attachment). The volume was 
still wrong but </p><p>I know the values of the forces. For the 
experimental </p><p>atomic volume they were at most 0.84 
mRy/a.u. </p><p>With best regards </p><p>Tomas 
Kana </p><p><br></p><br><blockquote>Since you ask for ideas and without 
really looking at the problem: <br>Assuming that the experimental numbers are 
correct, is this a room <br>temperature structure? The calculations are, of 
course, ground state <br>zero Kelvin, so things might go south if there is a 
phase transition <br>somewhere. Considering the elements you deal with maybe 
magnetic? What <br>are the forces in your calculations?<br><br>Good 
luck,<br><br>Martin<br><br><br><br><br></blockquote></body></html>