<html>
<head>
<style><!--
.hmmessage P
{
margin:0px;
padding:0px
}
body.hmmessage
{
font-size: 12pt;
font-family:΢ÈíÑźÚ
}
--></style></head>
<body class='hmmessage'><div dir='ltr'><pre>Thanks very much!</pre><pre>I have another question. <span style="font-family: ΢ÈíÑźÚ, sans-serif; font-size: 12pt;">In some papers, they said ¡®The potential and charge density in the muffin-tin (MT) spheres are expanded in spherical harmonics with lmax = 8 and non-spherical components up to lmax = 6.¡¯</span></pre><pre><span style="font-family: ΢ÈíÑźÚ, sans-serif; font-size: 12pt;">I don¡¯t know how to set different lmax value during the calculation.</span><span style="font-family: ΢ÈíÑźÚ, sans-serif; font-size: 12pt;"> Can you tell me how to do ?</span></pre><br><div>Date: Mon, 29 Feb 2016 18:40:25 +0100<br>From: tran@theochem.tuwien.ac.at<br>To: wien@zeus.theochem.tuwien.ac.at<br>Subject: Re: [Wien] How to get accurate GAP using BJ or mBJ methods?<br><br><pre>The fundamental problem of DFT is to be an approximate method whatever<br>is the xc functional/potential that is used.<br> <br>Anyway, if you really need band structure for your compounds with correct<br>band gap, then you can empirically adjust the parameter c of the mBJ<br>potential until the desired band gaps is obtained. For this, you need<br>to create the file case.in0abp.<br>For instance if you want to fix c to 1.2, the case.in0abp should be like<br>this (see Sec. 4.5.9 of the UG):<br>1.2<br>0.0<br>1.0<br> <br>F. Tran<br> <br>On Mon, 29 Feb 2016, JingQun wrote:<br> <br>> <br>> Dear all,<br>> <br>> I am running wien 14.2 on a machine with operating system centos 6.5, fortran compiler ifort.<br>> <br>> I want to calculate the electronic structures of borates £¨such as BBO, KBBF, LBO, and so on£©and get accurate GAP using BJ or mBJ methods. During the calculation, I have encountered some problems. They are:<br>> <br>> 1, Take KBBF for example. The bandgap of KBBF is 8.0 eV (the UV cutoff edge is about 155 nm). During the calculation, the unit-cell parameters and atomic coordinates were obtained from XRD, and the RMT were set as K (2.50), Be(1.28), B(1.19), O(1.38)<br>> F(1.56). The core electron states were separated from the valence states by -8.0 Ry, and the Rkmax was set as 5.0. The Irreducible Brillouin Zon was sampled at 500 k-points without shifted meshes, and the convergent condition for SCF was set as 10E(-5). In<br>> order to get accurate GAP as described elsewhere, a mBJ method was used. While unlike many other successful example, the bandgap obtained is either larger or smaller than the experimental values. That is to say, when I chose ¡®Original mBJ values (Tran,Blaha<br>> PRL102,226401)¡¯to calculate, the GAP of KBBF is about 11.504 eV, much larger than the experimental values (8.0 eV), while when I chose ¡®Unmodified BJ potential (Becke,Johnson J.Chem.Phys 124,221101¡¯, the result is 7.301 eV, smaller than experimental values.<br>> Can anyone kindly tell me how to get accurate bandgap value of borates ?<br>> <br>> PS: The KBBF.struct, KBBF.in1c, KBBF.in2c were added as attachment.<br>> <br>> KBBF.struct<br>> <br>> blebleble <br>> R LATTICE,NONEQUIV.ATOMS 5 155 R32 <br>> MODE OF CALC=RELA unit=bohr <br>> 8.364065 8.364065 35.454261 90.000000 90.000000120.000000 <br>> ATOM -1: X=0.00000000 Y=0.00000000 Z=0.00000000<br>> MULT= 1 ISPLIT= 4<br>> K NPT= 781 R0=.000050000 RMT= 2.50000 Z: 19.00000 <br>> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000<br>> 0.0000000 1.0000000 0.0000000<br>> 0.0000000 0.0000000 1.0000000<br>> ATOM -2: X=0.72172000 Y=0.72172000 Z=0.72172000<br>> MULT= 2 ISPLIT= 4<br>> -2: X=0.27828000 Y=0.27828000 Z=0.27828000<br>> F NPT= 781 R0=.000100000 RMT= 1.56 Z: 9.00000 <br>> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000<br>> 0.0000000 1.0000000 0.0000000<br>> 0.0000000 0.0000000 1.0000000<br>> ATOM -3: X=0.80242000 Y=0.80242000 Z=0.80242000<br>> MULT= 2 ISPLIT= 4<br>> -3: X=0.19758000 Y=0.19758000 Z=0.19758000<br>> Be NPT= 781 R0=.000100000 RMT= 1.28 Z: 4.00000 <br>> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000<br>> 0.0000000 1.0000000 0.0000000<br>> 0.0000000 0.0000000 1.0000000<br>> ATOM -4: X=0.50000000 Y=0.19045000 Z=0.80955000<br>> MULT= 3 ISPLIT= 8<br>> -4: X=0.80955000 Y=0.50000000 Z=0.19045000<br>> -4: X=0.19045000 Y=0.80955000 Z=0.50000000<br>> O NPT= 781 R0=.000100000 RMT= 1.38 Z: 8.00000 <br>> LOCAL ROT MATRIX: 0.0000000 0.5000000 0.8660254<br>> 0.0000000-0.8660254 0.5000000<br>> 1.0000000 0.0000000 0.0000000<br>> ATOM -5: X=0.50000000 Y=0.50000000 Z=0.50000000<br>> MULT= 1 ISPLIT= 4<br>> B NPT= 781 R0=.000100000 RMT= 1.19 Z: 5.00000 <br>> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000<br>> 0.0000000 1.0000000 0.0000000<br>> 0.0000000 0.0000000 1.0000000<br>> 6 NUMBER OF SYMMETRY OPERATIONS<br>> -1 0 0 0.00000000<br>> 0 0-1 0.00000000<br>> 0-1 0 0.00000000<br>> 1<br>> 0-1 0 0.00000000<br>> -1 0 0 0.00000000<br>> 0 0-1 0.00000000<br>> 2<br>> 0 0-1 0.00000000<br>> 0-1 0 0.00000000<br>> -1 0 0 0.00000000<br>> 3<br>> 0 1 0 0.00000000<br>> 0 0 1 0.00000000<br>> 1 0 0 0.00000000<br>> 4<br>> 0 0 1 0.00000000<br>> 1 0 0 0.00000000<br>> 0 1 0 0.00000000<br>> 5<br>> 1 0 0 0.00000000<br>> 0 1 0 0.00000000<br>> 0 0 1 0.00000000<br>> 6<br>> <br>> KBBF.in1c<br>> <br>> WFFIL EF=-.100583812400 (WFFIL, WFPRI, ENFIL, SUPWF)<br>> 5.00 10 4 (R-MT*K-MAX; MAX L IN WF, V-NMT<br>> 0.30 4 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)<br>> 0 -2.30 0.002 CONT 1<br>> 0 0.30 0.000 CONT 1<br>> 1 -1.08 0.002 CONT 1<br>> 1 0.30 0.000 CONT 1<br>> 0.30 3 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)<br>> 0 -1.90 0.002 CONT 1<br>> 0 0.30 0.000 CONT 1<br>> 1 0.30 0.000 CONT 1<br>> 0.30 2 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)<br>> 0 0.30 0.000 CONT 1<br>> 0 -7.51 0.001 STOP 1<br>> 0.30 3 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)<br>> 0 -1.46 0.002 CONT 1<br>> 0 0.30 0.000 CONT 1<br>> 1 0.30 0.000 CONT 1<br>> 0.30 2 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES, global APW/LAPW)<br>> 0 0.30 0.000 CONT 1<br>> 1 0.30 0.000 CONT 1<br>> K-VECTORS FROM UNIT:4 -11.0 1.5 54 emin / de (emax=Ef+de) / nband<br>> <br>> KBBF.in2c<br>> <br>> TOT (TOT,FOR,QTL,EFG,FERMI)<br>> -14.00 52.00 0.50 0.05 1 EMIN, NE, ESEPERMIN, ESEPER0, iqtlsave<br>> TETRA 0.000 (GAUSS,ROOT,TEMP,TETRA,ALL eval)<br>> 0 0 2 0 -3 3 4 0 4 3 -5 3 6 0 6 3 6 6<br>> 0 0 1 0 2 0 3 0 3 3 -3 3 4 0 4 3 -4 3 5 0 5 3 -5 3 6 0 6 3 -6 3 6 6 -6 6<br>> 0 0 1 0 2 0 3 0 3 3 -3 3 4 0 4 3 -4 3 5 0 5 3 -5 3 6 0 6 3 -6 3 6 6 -6 6<br>> 0 0 1 0 2 0 2 2 -2 2 3 0 3 2 -3 2 4 0 4 2 -4 2 4 4 -4 4 5 0 5 2 -5 2 5 4 -5 4 6 0 6 2 -6 2 6 4 -6 4 6 6 -6 6<br>> 0 0 2 0 -3 3 4 0 4 3 -5 3 6 0 6 3 6 6<br>> 14.00 GMAX<br>> NOFILE FILE/NOFILE write recprlist<br>> <br>> 2, In some papers, they said ¡®The potential and charge density in the muffin-tin (MT) spheres are expanded in spherical harmonics with lmax = 8 and non-spherical components up to lmax = 6.¡¯I don¡¯t know how to set different lmax value during the calculation.<br>> Can anyone tell me how to do ?<br>> <br>> Thanks very much.<br>> <br>> Yours<br>> <br>> Qun Jing<br>> <br>> <br>> <br>> <br>><br></pre><br>_______________________________________________
Wien mailing list
Wien@zeus.theochem.tuwien.ac.at
http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
SEARCH the MAILING-LIST at: http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</div> </div></body>
</html>