<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40"><head><META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=us-ascii"><meta name=Generator content="Microsoft Word 15 (filtered medium)"><style><!--
/* Font Definitions */
@font-face
{font-family:SimSun;
panose-1:2 1 6 0 3 1 1 1 1 1;}
@font-face
{font-family:"Cambria Math";
panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
{font-family:Calibri;
panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
{font-family:"\@SimSun";
panose-1:2 1 6 0 3 1 1 1 1 1;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
{margin:0in;
margin-bottom:.0001pt;
font-size:11.0pt;
font-family:"Calibri",sans-serif;}
a:link, span.MsoHyperlink
{mso-style-priority:99;
color:#0563C1;
text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
{mso-style-priority:99;
color:#954F72;
text-decoration:underline;}
span.EmailStyle17
{mso-style-type:personal-compose;
font-family:"Calibri",sans-serif;
color:windowtext;}
.MsoChpDefault
{mso-style-type:export-only;
font-family:"Calibri",sans-serif;}
@page WordSection1
{size:8.5in 11.0in;
margin:1.0in 1.0in 1.0in 1.0in;}
div.WordSection1
{page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]--></head><body lang=EN-US link="#0563C1" vlink="#954F72"><div class=WordSection1><p class=MsoNormal>Dear wien2k users and developers,<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>I tried to use irrep to analysis the parity of bands. But I got error saying “trsym:cannot find class” and the outputirso file is following:<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>********************************************************************************<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>knum = 1 kname= GAMMA <o:p></o:p></p><p class=MsoNormal>k = 0.000000 0.000000 0.000000<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal> The point group is Th <o:p></o:p></p><p class=MsoNormal> 24 symmetry operations in 8 classes<o:p></o:p></p><p class=MsoNormal> Table 79 on page 86 in Koster et al [7]<o:p></o:p></p><p class=MsoNormal> Table 72.4 on page 633 in Altmann et al [8]<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal> E 3C2 4C3 4C3- I 3IC2 4IC3 4IC3- <o:p></o:p></p><p class=MsoNormal> G1+ Ag 1 1 1 1 1 1 1 1 <o:p></o:p></p><p class=MsoNormal> G2+ 1Eg 1 1 e e* 1 1 e e* <o:p></o:p></p><p class=MsoNormal> G3+ 2Eg 1 1 e* e 1 1 e* e <o:p></o:p></p><p class=MsoNormal> G4+ Tg 3 -1 0 0 3 -1 0 0 <o:p></o:p></p><p class=MsoNormal> G1- Au 1 1 1 1 -1 -1 -1 -1 <o:p></o:p></p><p class=MsoNormal> G2- 1Eu 1 1 e e* -1 -1 -e -e* <o:p></o:p></p><p class=MsoNormal> G3- 2Eu 1 1 e* e -1 -1 -e* -e <o:p></o:p></p><p class=MsoNormal> G4- Tu 3 -1 0 0 -3 1 0 0 <o:p></o:p></p><p class=MsoNormal> --------------------------------------------------------<o:p></o:p></p><p class=MsoNormal> G5+ E1/2g 2 0 1 1 2 0 1 1 <o:p></o:p></p><p class=MsoNormal> G6+ 1F3/2g 2 0 e e* 2 0 e e* <o:p></o:p></p><p class=MsoNormal> G7+ 2F3/2g 2 0 e* e 2 0 e* e <o:p></o:p></p><p class=MsoNormal> G5- E1/2u 2 0 1 1 -2 0 -1 -1 <o:p></o:p></p><p class=MsoNormal> G6- 1F3/2u 2 0 e e* -2 0 -e -e* <o:p></o:p></p><p class=MsoNormal> G7- 2F3/2u 2 0 e* e -2 0 -e* -e <o:p></o:p></p><p class=MsoNormal> e=exp(2pi*i/3)<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal> labeling of IRs can change due to choice of <o:p></o:p></p><p class=MsoNormal> symmetry axes: G2 <;->; G3 and G6 <;->; G7 <o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>class, symmetry ops, exp(-i*k*taui)<o:p></o:p></p><p class=MsoNormal> E 21 (+1.00+0.00i)<o:p></o:p></p><p class=MsoNormal> 3C2 1 13 18 (+1.00+0.00i)<o:p></o:p></p><p class=MsoNormal> 4C3 2 3 14 15 16 17 19 20 (+1.00+0.00i) (+1.00+0.00i)<o:p></o:p></p><p class=MsoNormal> I 4 (+1.00+0.00i)<o:p></o:p></p><p class=MsoNormal>3IC2 7 12 24 (+1.00+0.00i)<o:p></o:p></p><p class=MsoNormal>4IC3 5 6 8 9 10 11 22 23 (+1.00+0.00i) (+1.00+0.00i)<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>bnd ndg eigval E 3C2 4C3 trsym:cannot find class<o:p></o:p></p><div style='mso-element:para-border-div;border:none;border-bottom:solid windowtext 1.0pt;padding:0in 0in 1.0pt 0in'><p class=MsoNormal style='border:none;padding:0in'><o:p> </o:p></p></div><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>I went through the archive, and found this usually happens in the case of the k point in the BZ surface of nonsymmorphic space group. But my structure have 204 Im-3 space group and is symmorphic as indicated by x symmetry. Also I was trying to analysis the GAMMA point which is the center of BZ. But I do found that the k point which is not special point works well with irrep. Another point is there are several exponential in the table above instead of simple value. Could anyone tell me what’s the reason of this error?<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>Thanks a lot for your effort in advance.<o:p></o:p></p><p class=MsoNormal><o:p> </o:p></p><p class=MsoNormal>Best<o:p></o:p></p><p class=MsoNormal>Kefeng Wang<o:p></o:p></p></div></body></html>