<div dir="auto"><div><span style="font-family:sans-serif;font-size:15.744px">To add one small thing; you can remove all the Li and it will still "match" the XRD. If it is powder data, you can probably remove all the O and it will still "match".</span><br><br><div data-smartmail="gmail_signature">---<br>Professor Laurence Marks<br>"Research is to see what everybody else has seen, and to think what nobody else has thought", Albert Szent-Gyorgi<br><a href="http://www.numis.northwestern.edu">http://www.numis.northwestern.edu</a><br>Corrosion in 4D <a href="http://MURI4D.numis.northwestern.edu">http://MURI4D.numis.northwestern.edu</a><br>Partner of the CFW 100% gender equity project, <a href="http://www.cfw.org/100-percent">www.cfw.org/100-percent</a><br>Co-Editor, Acta Cryst A<br>    </div><div class="gmail_extra"><br><div class="gmail_quote">On Jun 15, 2017 05:52, "pieper" <<a href="mailto:pieper@ifp.tuwien.ac.at">pieper@ifp.tuwien.ac.at</a>> wrote:<br type="attribution"><blockquote class="quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">You keep getting back to this match between the (presumably powder-)xrd<br>
you calculated from your .struct file and the experimental one. This<br>
does NOT imply that your structural model describes the physical<br>
situation correctly! With your - in Gerhards words - 'interesting<br>
approach' you should be able to produce any number of different .struct<br>
files, and calculating their powder-xrd find a similar 'match with the<br>
experimental one'.<br>
<br>
Did you calculate the xrd with any of the alternative distributions of<br>
Li, Ni and Ti on their sites in your unit cell? Did you try the same<br>
with the many, many other distributions you can generate in larger<br>
supercells? I am prettty sure you will find something that matches your<br>
xrd data. It will make as much sense as what you have now ...<br>
<br>
Be aware of the fact that structural models of Wien2k have symmetry<br>
properties  different from your physical situation: in your model the<br>
metal atoms occupy lattice sites regularly, breaking certain symmetries<br>
of the underlying lattice. The actual distribution in your case is<br>
(apparently more or less) random, which overall breaks no symmetry, but<br>
locally breaks every symmetry somewhere.<br>
<br>
If the distribution of Li, Ni, and Ti  really is random on one shared<br>
site I know of only one (expensive) way to proceed: try to reduce the<br>
influence of short range periodicity in your models by increasing the<br>
size of the supercell and putting Li, Ni, and Ti at random positions. Do<br>
structural relaxations, look what changes in your (GGA-) calculations,<br>
and keep fingers crossed that things you are interested in converge for<br>
supercells of a size you still can handle.<br>
<br>
<br>
<br>
---<br>
Dr. Martin Pieper<br>
Karl-Franzens University<br>
Institute of Physics<br>
Universitätsplatz 5<br>
A-8010 Graz<br>
Austria<br>
Tel.: +43-(0)316-380-8564
</blockquote></div><br></div></div></div>