<html><head><meta http-equiv="Content-Type" content="text/html charset=utf-8"></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space;" class="">Dear Sirs,<div class=""><br class=""></div><div class="">I’m having some trouble calculating the effective mass using the results from the band structure, so I’m going to explain the procedure that I tried.</div><div class=""><br class=""></div><div class="">First I compared the band structure with previous simulations and experimental results and it is correct.</div><div class="">Looking into the file case.spaghetti_ene, I can confirm that the k-points are in units of 2*pi/bohr (as explained in <a href="https://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/msg05273.html" class="">https://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/msg05273.html</a>).</div><div class="">Therefore, in order to fit the curve to the parabolic function E = hbar^2 * k^2 / (2 * m) to get the value of m, I transformed the 4th column from Bohr to Angstrom by multiplying it by 1.8897259886, squared it and subtracted to the 5th column the energy value at k=0 to have E(k=0) = 0.</div><div class="">If I plot the resulting E vs k^2, I get a straight line for the first few points and so I calculate the slope in that range, which is around 9.9.</div><div class="">Then, using the relation m = hbar^2 / (2 * slope), using hbar in units of eV.s I calculate the effective mass.</div><div class="">The result I get is 0.024*me when I was expecting to get something around 0.28*me, so I’m wrong in one order of magnitude.</div><div class="">Could you please help me understand what I’m doing wrong?</div><div class=""><br class=""></div><div class="">Best regards,</div><div class="">Marcelo</div><div class=""><br class=""></div></body></html>