<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=Windows-1252">
<meta name="Generator" content="Microsoft Exchange Server">
<!-- converted from text --><style><!-- .EmailQuote { margin-left: 1pt; padding-left: 4pt; border-left: #800000 2px solid; } --></style>
</head>
<body>
<meta content="text/html; charset=UTF-8">
<style type="text/css" style="">
<!--
p
        {margin-top:0;
        margin-bottom:0}
-->
</style>
<div dir="ltr">
<div id="x_divtagdefaultwrapper" dir="ltr" style="font-size:12pt; color:#000000; font-family:Calibri,Helvetica,sans-serif">
<p>Dear FT,</p>
<p><br>
</p>
<p>You mean that I take into account the the PW description is not valid in the sphere? Yes I take that into account by integrating over the whole cell and subtracting the atomic contributions.</p>
<p>Here is what I do :</p>
<p><a href="https://drive.google.com/file/d/1zXKHoLpxdSF663E0hu1DIQ9RDAw5nJRp/view" class="x_OWAAutoLink" id="LPlnk805504">https://drive.google.com/file/d/1zXKHoLpxdSF663E0hu1DIQ9RDAw5nJRp/view</a></p>
<p><br>
</p>
<p>Best regards,</p>
<p><br>
</p>
<p>Leandro Salemi<br>
</p>
</div>
<hr tabindex="-1" style="display:inline-block; width:98%">
<div id="x_divRplyFwdMsg" dir="ltr"><font face="Calibri, sans-serif" color="#000000" style="font-size:11pt"><b>From:</b> Wien <wien-bounces@zeus.theochem.tuwien.ac.at> on behalf of tran@theochem.tuwien.ac.at <tran@theochem.tuwien.ac.at><br>
<b>Sent:</b> Tuesday, December 5, 2017 3:42:26 PM<br>
<b>To:</b> A Mailing list for WIEN2k users<br>
<b>Subject:</b> Re: [Wien] Wavefunction above Fermi energy and normalization</font>
<div> </div>
</div>
</div>
<font size="2"><span style="font-size:10pt;">
<div class="PlainText">Hi,<br>
<br>
Are you multiplying the square of the orbitals with the step function<br>
(0 in spheres and 1 in interstitial) for the integral with the plane<br>
waves?<br>
<br>
FT<br>
<br>
On Tuesday 2017-12-05 15:31, Leandro Salemi wrote:<br>
<br>
>Date: Tue, 5 Dec 2017 15:31:47<br>
>From: Leandro Salemi <leandro.salemi@physics.uu.se><br>
>Reply-To: A Mailing list for WIEN2k users <wien@zeus.theochem.tuwien.ac.at><br>
>To: "wien@zeus.theochem.tuwien.ac.at" <wien@zeus.theochem.tuwien.ac.at><br>
>Subject: Re: [Wien] Wavefunction above Fermi energy and normalization<br>
><br>
><br>
>Dear Pr. Blaha,<br>
><br>
><br>
>Thank you very much for your help ! I compared with the result given by x<br>
>lapw2 -qtl and my integration inside the spheres gives the same results<br>
>(which is already a good point).<br>
><br>
>However, the integration in the interstitial part is still puzzling me as it<br>
>seems to give the good answer for occupied states (the sum of the<br>
>interstitial and spheres ~ 1) but does not for the unoccupied states ...<br>
><br>
><br>
>I will go through the maths and the routines once again ! If you have any<br>
>suggestion or know some similar routine which are worth looking at, I would<br>
>be please to hear from you !<br>
><br>
><br>
>Thank you again for your help and suggestions,<br>
><br>
><br>
>Best regards,<br>
><br>
><br>
>Leandro<br>
><br>
>____________________________________________________________________________<br>
>From: Wien <wien-bounces@zeus.theochem.tuwien.ac.at> on behalf of Peter<br>
>Blaha <pblaha@theochem.tuwien.ac.at><br>
>Sent: Monday, December 4, 2017 6:31:50 PM<br>
>To: wien@zeus.theochem.tuwien.ac.at<br>
>Subject: Re: [Wien] Wavefunction above Fermi energy and normalization  <br>
>Your approach seems right.<br>
><br>
>Use x lapw2 -qtl   to get the partial charges inside the spheres for<br>
>each eigenvalue.<br>
><br>
>You can compare this with your normalization program for the parts<br>
>inside the sphere.<br>
><br>
>Am 04.12.2017 um 18:01 schrieb Leandro Salemi:<br>
>> Dear Pr. Blaha,<br>
>><br>
>> Thank you for your quick answer. You are totally right with the case.in2<br>
>> file …<br>
>><br>
>><br>
>> For the wavefunction, that’s how I do :<br>
>><br>
>><br>
>> For the interstitial, I integrate the product of PW over the whole space<br>
>> and subtract the part from the spheres using a Rayleigh-expansion of a<br>
>> PW in terms of spherical harmonics.<br>
>><br>
>><br>
>> In the spheres, I compute terms like Alm* Blm \int u_l(r) dot(u)_l(r)<br>
>> r*r dr for the spheres. These coefficients are found in case.almblm and<br>
>> are actually Alm(k) = SUM_G C_G Alm(k+G) (this I got from a previous<br>
>> mailing thread). I have also terms like Alm* Clm \int u_l(r) u_lo__l(r)<br>
>> r*r dr to take into account the APW+lo and LO ! I guess that the Clm’s<br>
>> in case.almclm are also the ones multiplied by their coefficient C_G(LO)<br>
>> (which are not really part of the PW expansion), just like for Alm and<br>
>> Blm. I sum those terms over the different indexes l,m and over the<br>
>spheres.<br>
>><br>
>><br>
>> Actually, I follow more less what is presented in the paper of C.<br>
>> Ambrosch-Draxl and J. O. Sofo (Computer Physics Communications 175<br>
>> (2006) 1–14). They computed <Psi_mk| p |Psi_nk> so I of course adapted<br>
>> the formalism to my need.<br>
>><br>
>><br>
>> Since you said that wavefunctions where all normalized, even above E_F,<br>
>> I must have missed something somewhere … If you see any mistake in what<br>
>> I have written there or have any references, works or source code I<br>
>> should look at, I would be pleased to hear that ! My aim is to extract<br>
>> exactly the wavefunctions. I will then manipulate them.<br>
>><br>
>><br>
>> Thank you very much,<br>
>><br>
>><br>
>> Best regards,<br>
>><br>
>><br>
>> Leandro Salemi<br>
>><br>
>><br>
>> P.S. : I might have answered in a not-proper way since I had not<br>
>> received the mail (I did not pay attention that my account was disabled<br>
>> for the reception of the mail ...). Sorry for the inconvenience (now it<br>
>> is enabled).<br>
>><br>
>><br>
>><br>
>><br>
>><br>
>> Peter Blaha<br>
>><<a href=""></a>https://www.mail-archive.com/search?l=wien@zeus.theochem.tuwien.ac.at&q=fr<br>
>om:%22Peter+Blaha%22><br>
>> Mon, 04 Dec 2017 06:13:01 -0800<br>
>><<a href=""></a>https://www.mail-archive.com/search?l=wien@zeus.theochem.tuwien.ac.at&q=da<br>
>te:20171204><br>
>><br>
>><br>
>> Of course all the wave functions are normalized. It comes automatically<br>
>> after solving the generalized eigenvalue problem in lapw1. Without<br>
>> properly normalized wave functions, how should we calculate an electron<br>
>> density which yields the desired number of electrons ??<br>
>><br>
>> Why did you modify the code ?<br>
>> It would be much simpler to set NE in case.in2 to a larger number ....<br>
>><br>
>> I don't know how you actually calculated the norm of a wave function,<br>
>> but due to the dual representation, it is not so straightforward.<br>
>><br>
>> On 12/04/2017 02:55 PM, Leandro Salemi wrote:<br>
>><br>
>>     Dear WIEN2K users and developers,<br>
>><br>
>><br>
>>     I am currently playing with the wavefunctions in WIEN2K in order to<br>
>>     compute material-dependent properties. I must then extract them !<br>
>><br>
>><br>
>>     I managed to extract the relevant quantities (C_nk(G), the coefficents<br>
>>     A_lm, B_lm, C_lm and the radial functions) in order to build the<br>
>>     wavefunction. When I try to compute the norm of the wavefunction, I<br>
>find<br>
>>     that it is quite well normalized BUT only for states which are below<br>
>the<br>
>>     Fermi energy … For states above, discrepancies arise and I find<br>
>numbers<br>
>>     like 0.8 or 1.3 …<br>
>><br>
>><br>
>>     To output the A_lm, B_lm of unoccupied states with "x lapw2 -alm", I<br>
>>     modified slightly the l2main.F routine. The following has been done :<br>
>><br>
>>     IF(MODUS.EQ.'ALM ') then<br>
>><br>
>>     !LEANDRO INCLUDE EMPTY BANDS (START)<br>
>><br>
>>     NEMAX_SAVE=NEMAX<br>
>><br>
>>     NEMAX=NE<br>
>><br>
>>     !LEANDRO INCLUDE EMPTY BANDS (END)<br>
>><br>
>>     WRITE(24,2055) s_kvec,t_kvec,z_kvec,n,ne,bname<br>
>><br>
>>     write(24,*) jatom,nemin,nemax,' jatom,nemin,nemax'<br>
>><br>
>>     endif<br>
>><br>
>><br>
>>     where my modification is in between the “!LEANDRO …”. What I did it<br>
>just<br>
>>     saying that the NEMAX (which normally refers to the number of occupied<br>
>>     bands) should go up to the highest computed state and thus, can go<br>
>above<br>
>>     the Fermi level.<br>
>><br>
>><br>
>>     I was wondering that may be, the states are automatically normalized<br>
>but<br>
>>     only for those below the Fermi level. If this is the case, then I can<br>
>>     compute the norm and divide by the sqrt. Am I right or am I missing<br>
>>     something ? Since the wavefunction is the basic mathematical<br>
>description<br>
>>     of the material, extracting wrong quantities would be quite<br>
>problematic ...<br>
>><br>
>>     I am of course taking into account the local orbitals in the process !<br>
>><br>
>>     Are the wavefunctions only normalized below E_F ? If yes, do you know<br>
>in<br>
>>     which part the normalization is done ?<br>
>><br>
>><br>
>>     If anyone has experience with this topic or any suggestion, I would be<br>
>>     please to hear ! I have already checked throughout the mailing list<br>
>and<br>
>>     the user guide ...<br>
>><br>
>><br>
>>     Thank you,<br>
>><br>
>><br>
>>     Leandro Salemi<br>
>><br>
>><br>
>><br>
>><br>
>>     _______________________________________________<br>
>>     Wien mailing list<br>
>>     Wien@zeus.theochem.tuwien.ac.at<br>
>>     <a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
>>     SEARCH the MAILING-LIST at:<br>
>>     <a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html">
http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</a><br>
>><br>
>><br>
>><br>
>><br>
>> _______________________________________________<br>
>> Wien mailing list<br>
>> Wien@zeus.theochem.tuwien.ac.at<br>
>> <a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
>> SEARCH the MAILING-LIST at: <br>
><a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html">http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</a><br>
>><br>
><br>
>--<br>
>--------------------------------------------------------------------------<br>
>Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna<br>
>Phone: +43-1-58801-165300             FAX: +43-1-58801-165982<br>
>Email: blaha@theochem.tuwien.ac.at    WIEN2k: <a href="http://www.wien2k.at">http://www.wien2k.at</a><br>
>WWW:<br>
><a href="http://www.imc.tuwien.ac.at/tc_blaha---------------------------------------">http://www.imc.tuwien.ac.at/tc_blaha---------------------------------------</a><br>
>----------------------------------<br>
>IMC :&nbsp;Prof. Dr. P. Blaha: Computational Materials Science - Home of<br>
>WIEN2k<br>
><a href="http://www.imc.tuwien.ac.at">www.imc.tuwien.ac.at</a><br>
>Homepage of Institute of Materials Chemistry<br>
><br>
><br>
><br>
>_______________________________________________<br>
>Wien mailing list<br>
>Wien@zeus.theochem.tuwien.ac.at<br>
><a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
>SEARCH the MAILING-LIST at: <br>
><a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html">http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</a><br>
><br>
></div>
</span></font>
</body>
</html>