<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <p>As far as I know, WIEN2k still does not include a package to
      calculate <I^2> [
<a class="moz-txt-link-freetext" href="https://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/msg14478.html">https://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/msg14478.html</a>
      ].</p>
    <p>For WIEN2k calculations, I have seen <span
        id="gmail-yui_3_14_1_1_1519728677249_1139"><span
          class="gmail-collabsible-text"
          id="gmail-yui_3_14_1_1_1519728677249_1138"><span
            class="gmail-Linkify"
            id="gmail-yui_3_14_1_1_1519728677249_1137"><I^2>
            calculated with the </span></span></span>Gaspari-Gyorffy
      formula [ <a class="moz-txt-link-freetext" href="https://doi.org/10.1016/j.jallcom.2017.09.299">https://doi.org/10.1016/j.jallcom.2017.09.299</a> ].</p>
    <p>"We thank W. E. Pickett for sharing the RMTA code with us" [ <span
        class="doi-field"><a class="moz-txt-link-freetext" href="https://doi.org/10.1103/PhysRevB.74.184519">https://doi.org/10.1103/PhysRevB.74.184519</a></span>
      ]<br>
    </p>
    <p>However, I haven't seen Pickett's [
      <a class="moz-txt-link-freetext" href="http://physics.ucdavis.edu/people/faculty/warren-pickett">http://physics.ucdavis.edu/people/faculty/warren-pickett</a> ] RMTA
      code available to the general public.<br>
    </p>
    As I recall, the calculation might require that you modify yourself
    atpar.f [
<a class="moz-txt-link-freetext" href="http://wien.zeus.theochem.tuwien.ac.narkive.com/ffod74Mc/calculation-of-electron-phonon-coupling-constant">http://wien.zeus.theochem.tuwien.ac.narkive.com/ffod74Mc/calculation-of-electron-phonon-coupling-constant</a>
    ].<br>
    <br>
    <div class="moz-cite-prefix">On 2/27/2018 3:54 AM, pachineela
      rambabu wrote:<br>
    </div>
    <blockquote type="cite"
cite="mid:CAB+_m+q3g+oRKqh8yqJwpKYdyH2gv1E2wCNvovVu1e4LMu9UhQ@mail.gmail.com">
      <div dir="ltr"><span id="gmail-yui_3_14_1_1_1519728677249_1139"><span
            class="gmail-collabsible-text"
            id="gmail-yui_3_14_1_1_1519728677249_1138"><span
              class="gmail-Linkify"
              id="gmail-yui_3_14_1_1_1519728677249_1137">
              <div class="gmail-nova-e-text gmail-nova-e-text--size-m
                gmail-nova-e-text--family-sans-serif
                gmail-nova-e-text--spacing-s
                gmail-nova-e-text--color-inherit gmail-redraft-text">Dear
                Wien2k, the electron-phonon coupling can be calculated
                by using the formula<br>
                <br>
              </div>
              <div class="gmail-nova-e-text gmail-nova-e-text--size-m
                gmail-nova-e-text--family-sans-serif
                gmail-nova-e-text--spacing-s
                gmail-nova-e-text--color-inherit gmail-redraft-text"><b>Lambda=(Eta)/(m<w^2>)</b>,
                Here Eta is Hopefield parameter and can be written as<br>
                <br>
              </div>
              <div class="gmail-nova-e-text gmail-nova-e-text--size-m
                gmail-nova-e-text--family-sans-serif
                gmail-nova-e-text--spacing-s
                gmail-nova-e-text--color-inherit gmail-redraft-text"><b>Eta=
                  N(Ef)*<I^2></b>, Here N(Ef) is total density of
                states and <I^2> is the square of electron-phonon
                matrix element over fermi surface.<br>
                <br>
              </div>
              <div class="gmail-nova-e-text gmail-nova-e-text--size-m
                gmail-nova-e-text--family-sans-serif
                gmail-nova-e-text--spacing-s
                gmail-nova-e-text--color-inherit gmail-redraft-text">By
                using some approximations <w^2> can be written as
                0.5*(Theta D^2), here Theta D is Debye temperature. And
                m is average atomic mass</div>
              <div class="gmail-nova-e-text gmail-nova-e-text--size-m
                gmail-nova-e-text--family-sans-serif
                gmail-nova-e-text--spacing-s
                gmail-nova-e-text--color-inherit gmail-redraft-text">So
                the final formula will become as<br>
                <br>
              </div>
              <div class="gmail-nova-e-text gmail-nova-e-text--size-m
                gmail-nova-e-text--family-sans-serif
                gmail-nova-e-text--spacing-s
                gmail-nova-e-text--color-inherit gmail-redraft-text"><b>Lambda=(N(Ef)*<I^2>)/(m*0.5*Theta
                  D^2).</b><br>
                <br>
              </div>
              <div class="gmail-nova-e-text gmail-nova-e-text--size-m
                gmail-nova-e-text--family-sans-serif
                gmail-nova-e-text--spacing-s
                gmail-nova-e-text--color-inherit gmail-redraft-text">Here
                i am facing the problem how to approximate the
                <I^2> value from wien2K band structure
                calculations.<br>
                <br>
              </div>
              <div class="gmail-nova-e-text gmail-nova-e-text--size-m
                gmail-nova-e-text--family-sans-serif
                gmail-nova-e-text--spacing-s
                gmail-nova-e-text--color-inherit gmail-redraft-text">Please
                suggest a solution.</div>
            </span></span></span><br clear="all">
        <br>
        -- <br>
        <div class="gmail_signature" data-smartmail="gmail_signature">
          <div dir="ltr">
            <div>
              <div dir="ltr">
                <div>
                  <div dir="ltr">
                    <div>
                      <div>
                        <div><b>P. Rambabu</b><br>
                        </div>
                        PhD Scholor<br>
                      </div>
                      <div>Physics, IIT Hyderabad<br>
                      </div>
                    </div>
                    Mobile: 9074508220.<br>
                  </div>
                </div>
              </div>
            </div>
          </div>
        </div>
      </div>
    </blockquote>
  </body>
</html>