<div dir="ltr"><div class="gmail_default" style="font-family:verdana,sans-serif;color:#000000">To my knowledge, the closest you can come is the LDA 1/2 method, and/or LDA (or GGA) +U. These are related to what is called the "Slater-Janak transition state approach", although not many people use it. My group found it useful for VXPS spectra of some lanthanides, see DOI: 10.1103/PhysRevMaterials.2.025001.</div><div class="gmail_default" style="font-family:verdana,sans-serif;color:#000000"><br></div><div class="gmail_default" style="font-family:verdana,sans-serif;color:#000000">However, I am not sure that this is appropriate for EELS, unless you are using low energy electrons (e.g. 1-100 eV). For standard core-loss EELS the changes when using a Slater approach are so large that they will probably swamp these effects. Also important for conventional EELS are standard channelling issues -- to my knowledge no code currently can correctly include both the dynamical diffraction terms and the solid-state transition terms with full rigor.</div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Sun, Nov 17, 2019 at 7:59 AM 丁一凡 <<a href="mailto:yfding0375@foxmail.com">yfding0375@foxmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div><div>As we all know, DFT deals with the system in the ground state. When dealing with the charge transfer insulator system, can I modify the valence electronic configuration after initialization and before SCF and EELS (Electron Energy Loss Spectroscopy) calculations ?</div><div><br></div><div>The Cu-based high temperature superconducting (HTSC) oxides are known to be insulators of a charge-transfer type, with the charge-transfer (CT) gap originating from the energy difference between the O(2p) and the Cu(3dx2-y2) orbitals. Before calculating EELS of Cu-based HTSC oxides, will it make the result reasonable if their valence electron configuration is changed ? For example, we remove one oxygen 2p electron and add one electron in Cu 3d orbit. Just like the treatment of core hole effect. For a “core-hole” calculation we will edit super.inc and remove one core electron from the desired atom and state (1s or 2p, ...). Then we add the missing electron either in super.inm (background charge) or super.in2 (add it to the valence electrons).</div><div><br></div><div>This problem haunts me for several weeks, and my question is still unsolved after consulting the previous mailing list. Any comment(s) would be highly appreciated. Thanks in advance!</div></div>_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.at</a><br>
<a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__zeus.theochem.tuwien.ac.at_mailman_listinfo_wien&d=DwICAg&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=FNBOlFHjZKxWOUE7JbFz8Euj1d26nwaUGP96FSpj_v8&s=qvSVWjM2sFOW6misH9dhI-lUUqKZmN2Ux2Xawt-pD3k&e=" rel="noreferrer" target="_blank">https://urldefense.proofpoint.com/v2/url?u=http-3A__zeus.theochem.tuwien.ac.at_mailman_listinfo_wien&d=DwICAg&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=FNBOlFHjZKxWOUE7JbFz8Euj1d26nwaUGP96FSpj_v8&s=qvSVWjM2sFOW6misH9dhI-lUUqKZmN2Ux2Xawt-pD3k&e=</a> <br>
SEARCH the MAILING-LIST at:  <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.mail-2Darchive.com_wien-40zeus.theochem.tuwien.ac.at_index.html&d=DwICAg&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=FNBOlFHjZKxWOUE7JbFz8Euj1d26nwaUGP96FSpj_v8&s=go40WrwaP622LVcgRSe_KrfAwQdcBNY6aynFxWuswYo&e=" rel="noreferrer" target="_blank">https://urldefense.proofpoint.com/v2/url?u=http-3A__www.mail-2Darchive.com_wien-40zeus.theochem.tuwien.ac.at_index.html&d=DwICAg&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=FNBOlFHjZKxWOUE7JbFz8Euj1d26nwaUGP96FSpj_v8&s=go40WrwaP622LVcgRSe_KrfAwQdcBNY6aynFxWuswYo&e=</a> <br>
</blockquote></div><br clear="all"><div><br></div>-- <br><div dir="ltr" class="gmail_signature"><div dir="ltr">Professor Laurence Marks<br>Department of Materials Science and Engineering<br>Northwestern University<br><a href="http://www.numis.northwestern.edu/" target="_blank">www.numis.northwestern.edu</a><div>Corrosion in 4D: <a href="http://www.numis.northwestern.edu/MURI" target="_blank">www.numis.northwestern.edu/MURI</a><br>Co-Editor, Acta Cryst A<br>"Research is to see what everybody else has seen, and to think what nobody else has thought"<br>Albert Szent-Gyorgi</div></div></div>