<div dir="auto"><span style="font-family:sans-serif;font-size:12.8px">>2) Slaters transistion state is a well known concept to calculate the</span><br style="font-family:sans-serif;font-size:12.8px"><span style="font-family:sans-serif;font-size:12.8px">>XPS binding energy of a core state, where you would remove the excited</span><br style="font-family:sans-serif;font-size:12.8px"><span style="font-family:sans-serif;font-size:12.8px">>electron from the system (it comes out and goes to the detector). It has</span><br style="font-family:sans-serif;font-size:12.8px"><span style="font-family:sans-serif;font-size:12.8px">>NOTHING to do in EELS , where the excited electron stays in the system</span><br style="font-family:sans-serif;font-size:12.8px"><span style="font-family:sans-serif;font-size:12.8px">>(except if you would attempt to calculate the absolute energy of an edge).</span><div dir="auto"><font face="sans-serif"><span style="font-size:12.8px"><br></span></font></div><div dir="auto"><font face="sans-serif"><span style="font-size:12.8px">Hmmm. If you put the excited state into the system it goes into the LUMO as you say in 3), in general the wrong place. Therefore I will argue that treating it as "gone" via a Slater method in EELS makes physical sense. I don't agree with the physics of adding it back as a real electron, sorry, as background seems the only appropriate way.</span></font></div><div dir="auto"><font face="sans-serif"><span style="font-size:12.8px"><br></span></font></div><div dir="auto"><font face="sans-serif"><span style="font-size:12.8px">N.B., of course, if due to the core hole (fractional or full) previously unoccupied states at the target atom drop below the Fermi energy they will now get filled which can be unphysical. I can't see how one avoids this for a metal or a small gap insulator within standard DFT; neither the mixer nor lapw2 currently have atom occupancy constraints. Using runfsm can avoid this in some cases.</span></font></div><div dir="auto"><br><div data-smartmail="gmail_signature" dir="auto">_____<br>Professor Laurence Marks<br>"Research is to see what everybody else has seen, and to think what nobody else has thought", Albert Szent-Gyorgi<br><a href="http://www.numis.northwestern.edu">www.numis.northwestern.edu</a></div></div><br><div class="gmail_quote" dir="auto"><div dir="ltr" class="gmail_attr">On Mon, Nov 18, 2019, 01:12 Peter Blaha <<a href="mailto:pblaha@theochem.tuwien.ac.at">pblaha@theochem.tuwien.ac.at</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">I'll add a few statements about core-EELS:<br>
<br>
1) Core hole: In principle we want to simulate the excitation of ONE <br>
core electron into the conduction band. Thus one should create a big <br>
supercell (as big as possible, at least 64 atoms) and put a full core <br>
hole (I guess this was NOT yet mentioned, but is the most important <br>
point of the discussion !!!!!). This hole will be partially screened, <br>
and with our limited supercell size and the static DFT approximation, <br>
this screening could be incomplete and thus one sometimes uses <br>
"empirically" 1/2  or no core hole (in particular for metals) at all.<br>
This is an often used method, but of course it is no longer "ab initio".<br>
<br>
2) Slaters transistion state is a well known concept to calculate the <br>
XPS binding energy of a core state, where you would remove the excited <br>
electron from the system (it comes out and goes to the detector). It has <br>
NOTHING to do in EELS , where the excited electron stays in the system <br>
(except if you would attempt to calculate the absolute energy of an edge).<br>
<br>
3) excited electron: In principle it is clear that the excited electron <br>
should go into a dipole allowed conduction band state. However, we have <br>
NO MEANS to select such a state and the electron will go into the first <br>
empty states in the system in a scf procedure.If we feel that this state <br>
is not the state where it would go in experiment, it is better to put <br>
the electron into the "background" charge (mixer). E.g in NiO the O-1s <br>
electron should go into a O-2p state. However, the first conduction <br>
bands are Ni-d states in the supercell calculation and thus adding an <br>
electron to the valence electrons is not appropriate. In the case of <br>
cuprates, I'd probably add it to the valence, since the "hole" state is <br>
a mixture of Cu-d-x2-y2 - O-2p and thus at least partly it is ok to put <br>
the electron into it. In any case, I'd do the calculation with both, <br>
adding the electron to valence or to background.<br>
<br>
4) spin state: It is of course clear, that the photon does not change <br>
the spin state of the excited electron.In a spin-polarized calculation <br>
when you put the electron into the valence, it is usually obeyed anyway, <br>
because the missing core electron of "spin-up" will lower the potential <br>
of spin-up and the electron will go into the spin-up conduction bands, <br>
preserving the total spin of the system.<br>
However, correlations within the conduction bands could change this <br>
anyway, because the "other electrons" could react on the presence of an <br>
additional spin-up electron.This is in particular true for correlated TM <br>
oxides. And if you use the background-option, the spin.state is not <br>
defined anyway, since the background option cannot be done spin-selective.<br>
<br>
In non-spinpolarized calculations it should not really matter.<br>
<br>
<br>
<br>
Am 17.11.2019 um 14:58 schrieb 丁一凡:<br>
> As we all know, DFT deals with the system in the ground state. When <br>
> dealing with the charge transfer insulator system, can I modify the <br>
> valence electronic configuration after initialization and before SCF and <br>
> EELS (Electron Energy Loss Spectroscopy) calculations ?<br>
> <br>
> The Cu-based high temperature superconducting (HTSC) oxides are known to <br>
> be insulators of a charge-transfer type, with the charge-transfer (CT) <br>
> gap originating from the energy difference between the O(2p) and the <br>
> Cu(3dx2-y2) orbitals. Before calculating EELS of Cu-based HTSC oxides, <br>
> will it make the result reasonable if their valence electron <br>
> configuration is changed ? For example, we remove one oxygen 2p electron <br>
> and add one electron in Cu 3d orbit. Just like the treatment of core <br>
> hole effect. For a “core-hole” calculation we will edit super.inc and <br>
> remove one core electron from the desired atom and state (1s or 2p, <br>
> ...). Then we add the missing electron either in super.inm (background <br>
> charge) or super.in2 (add it to the valence electrons).<br>
> <br>
> This problem haunts me for several weeks, and my question is still <br>
> unsolved after consulting the previous mailing list. Any comment(s) <br>
> would be highly appreciated. Thanks in advance!<br>
> <br>
> _______________________________________________<br>
> Wien mailing list<br>
> <a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank" rel="noreferrer">Wien@zeus.theochem.tuwien.ac.at</a><br>
> <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__zeus.theochem.tuwien.ac.at_mailman_listinfo_wien&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=MOzUHDdGlrTr8TIz0vmShO1CrqFUpOMrk6VAjbEXeb8&e=" rel="noreferrer noreferrer" target="_blank">https://urldefense.proofpoint.com/v2/url?u=http-3A__zeus.theochem.tuwien.ac.at_mailman_listinfo_wien&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=MOzUHDdGlrTr8TIz0vmShO1CrqFUpOMrk6VAjbEXeb8&e=</a> <br>
> SEARCH the MAILING-LIST at:  <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.mail-2Darchive.com_wien-40zeus.theochem.tuwien.ac.at_index.html&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=x_IGQe3rnmvATuwHsDmuXlIJwnfkSpLy3h_piVbnX5M&e=" rel="noreferrer noreferrer" target="_blank">https://urldefense.proofpoint.com/v2/url?u=http-3A__www.mail-2Darchive.com_wien-40zeus.theochem.tuwien.ac.at_index.html&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=x_IGQe3rnmvATuwHsDmuXlIJwnfkSpLy3h_piVbnX5M&e=</a> <br>
> <br>
<br>
-- <br>
--------------------------------------------------------------------------<br>
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna<br>
Phone: +43-1-58801-165300             FAX: +43-1-58801-165982<br>
Email: <a href="mailto:blaha@theochem.tuwien.ac.at" target="_blank" rel="noreferrer">blaha@theochem.tuwien.ac.at</a>    WIEN2k: <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.wien2k.at&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=ESXAPP1GepwvQAUnX_o0E0i4yrW6K97oumUpN9popms&e=" rel="noreferrer noreferrer" target="_blank">https://urldefense.proofpoint.com/v2/url?u=http-3A__www.wien2k.at&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=ESXAPP1GepwvQAUnX_o0E0i4yrW6K97oumUpN9popms&e=</a> <br>
WWW: <br>
<a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.imc.tuwien.ac.at_tc-5Fblaha-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=k3mkdDbRhNETe4UslG_qiAMsCi8kWR-6jIyJphhCYg8&e=" rel="noreferrer noreferrer" target="_blank">https://urldefense.proofpoint.com/v2/url?u=http-3A__www.imc.tuwien.ac.at_tc-5Fblaha-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D-2D&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=k3mkdDbRhNETe4UslG_qiAMsCi8kWR-6jIyJphhCYg8&e=</a>  <br>
<br>
_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank" rel="noreferrer">Wien@zeus.theochem.tuwien.ac.at</a><br>
<a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__zeus.theochem.tuwien.ac.at_mailman_listinfo_wien&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=MOzUHDdGlrTr8TIz0vmShO1CrqFUpOMrk6VAjbEXeb8&e=" rel="noreferrer noreferrer" target="_blank">https://urldefense.proofpoint.com/v2/url?u=http-3A__zeus.theochem.tuwien.ac.at_mailman_listinfo_wien&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=MOzUHDdGlrTr8TIz0vmShO1CrqFUpOMrk6VAjbEXeb8&e=</a> <br>
SEARCH the MAILING-LIST at:  <a href="https://urldefense.proofpoint.com/v2/url?u=http-3A__www.mail-2Darchive.com_wien-40zeus.theochem.tuwien.ac.at_index.html&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=x_IGQe3rnmvATuwHsDmuXlIJwnfkSpLy3h_piVbnX5M&e=" rel="noreferrer noreferrer" target="_blank">https://urldefense.proofpoint.com/v2/url?u=http-3A__www.mail-2Darchive.com_wien-40zeus.theochem.tuwien.ac.at_index.html&d=DwIGbw&c=yHlS04HhBraes5BQ9ueu5zKhE7rtNXt_d012z2PA6ws&r=U_T4PL6jwANfAy4rnxTj8IUxm818jnvqKFdqWLwmqg0&m=7hyARPbNntmGI327-yfSo6wT5MPNXevIbNCpEfXnws0&s=x_IGQe3rnmvATuwHsDmuXlIJwnfkSpLy3h_piVbnX5M&e=</a> <br>
</blockquote></div></div>