<div dir="ltr">
<div>In reference to the email from Suxing, some attention should be paid to the words "energetic particles"</div><div><br></div><div>
It is actually more the speed of the particle, rather than the energy, that counts for the relevance of the applicability of electronic structure methods in the field of ion irradiation. <br></div><div><br></div><div>For energetic light ions (from few tenths of Mev to higher) impacting on biomaterials, one absolutely does NOT need DFT, as the impacting particle will not be sensitive to the electronic structure details of the target.</div><div>If the light ion is slow (so, the speed is low, and energy is below some few MeV), then the electronic and geometrical details of the target maye play a role (I would say starting from few hundreds keV, even less)<br></div><div><br></div><div>If the "energetic particle" is a heavy ion, then its energy may be mostly due to the mass. It could  actually be a slow big ion. In the case of such a low speed big ion, with high energy, then one would indeed be sensitive again to the details of the target. If the heavy ion is very energetic also because it has high speed, then again DFT methods are not of relevance.</div><div><br></div><div> </div><div><br></div><div><br></div><div><br></div>

</div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">Il giorno mer 10 mar 2021 alle ore 15:44 Michael Sluydts <<a href="mailto:michael.sluydts@ugent.be">michael.sluydts@ugent.be</a>> ha scritto:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex">
  
    
  
  <div>
    <div>Hey Laurence,</div>
    <div><br>
    </div>
    <div>Not sure if you're specifically
      thinking of solid-state, but typical biochemistry applications are
      common. <br>
    </div>
    <div><br>
    </div>
    <div>For instance DFT and AI for drug
      discovery:<br>
<a href="https://www.technologyreview.com/10-breakthrough-technologies/2020/#ai-discovered-molecules" target="_blank">https://www.technologyreview.com/10-breakthrough-technologies/2020/#ai-discovered-molecules</a></div>
    <div><br>
    </div>
    <div>Studies of initial polymer reactions,
      functional groups of proteins and so on also spring to mind or to
      try and get dynamic properties/spectroscopy of (parts of) very
      small proteins. <br>
    </div>
    <div><br>
    </div>
    <div>In the end also DFT components to make
      forcefields or machine learning potentials for all kinds of
      applications are also very relevant nowadays (by sampling
      subsystems of larger ones). <br>
    </div>
    <div>Colleague of mine used to study oxygen
      transport in lipid membranes with the NIH, not ab initio MD, but i
      can imagine the ML potential approach may be interesting.<br>
    </div>
    <div><a href="https://molmod.ugent.be/publications/permeability-membranes-liquid-ordered-and-liquid-disordered-phases" target="_blank">https://molmod.ugent.be/publications/permeability-membranes-liquid-ordered-and-liquid-disordered-phases</a></div>
    <div><br>
    </div>
    <div>Just some quick thoughts though. ;) <br>
    </div>
    <div><br>
    </div>
    <div>Kind regards,</div>
    <div><br>
    </div>
    <div>Michael Sluydts</div>
    <div><br>
    </div>
    <div>On 3/10/2021 2:45 PM, Laurence Marks
      wrote:<br>
    </div>
    <blockquote type="cite">
      
      <div dir="auto">I realize this is not really a W2k question, but
        anyway: is anyone aware of much use of DFT in biomedical
        research?<br>
        <br>
        <div>_____<br>
          Professor Laurence Marks<br>
          "Research is to see what everybody else has seen, and to think
          what nobody else has thought", Albert Szent-Györgyi<br>
          <a href="http://www.numis.northwestern.edu" target="_blank">www.numis.northwestern.edu</a></div>
      </div>
      <br>
      <fieldset></fieldset>
      <pre>_______________________________________________
Wien mailing list
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.at</a>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" target="_blank">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a>
SEARCH the MAILING-LIST at:  <a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" target="_blank">http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</a>
</pre>
    </blockquote>
    <p><br>
    </p>
    <pre cols="72">-- 
dr. ir. Michael Sluydts
Center for Molecular Modeling
Ghent University
Technologiepark 903
9052 Zwijnaarde, Belgium
tel. +32 (0)9 264 66 19
<a href="https://molmod.ugent.be" target="_blank">https://molmod.ugent.be</a></pre>
  </div>

_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at" target="_blank">Wien@zeus.theochem.tuwien.ac.at</a><br>
<a href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien" rel="noreferrer" target="_blank">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at:  <a href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html" rel="noreferrer" target="_blank">http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</a><br>
</blockquote></div>