<html>
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <p>There is the relation [1]: <br>
    </p>
    <p><span class="texhtml">λ = hc/E</span></p>
    <p><span class="texhtml">Then with that:<br>
      </span></p>
    <p><span class="texhtml">λ = limit_{E→0} [hc/E] = </span><span
        style="left: 369px; top: 1177.77px; font-size: 12.5721px;
        font-family: serif; transform: scaleX(1.00646);"
        role="presentation" dir="ltr"> </span><span class="texhtml"><span
          style="left: 369px; top: 1177.77px; font-size: 12.5721px;
          font-family: serif; transform: scaleX(1.00646);"
          role="presentation" dir="ltr">∞</span></span><span
        style="left: 369px; top: 1177.77px; font-size: 12.5721px;
        font-family: serif; transform: scaleX(1.00646);"
        role="presentation" dir="ltr"></span><span class="texhtml"></span></p>
    <p>I seem to be missing what you defined epsilon_0 and epsilon_oo
      as.</p>
    <p>There is ε0 defined as the dielectric constant at low frequency
      and ε<span class="texhtml"><span style="left: 369px; top:
          1177.77px; font-size: 12.5721px; font-family: serif;
          transform: scaleX(1.00646);" role="presentation" dir="ltr">∞</span></span>
      the dielectric constant at high frequency like in equation (18) of
      [2],</p>
    <p>where ε0, ε(0), or εs might be also be known as the static
      electric constant while ε<span class="texhtml"><span style="left:
          369px; top: 1177.77px; font-size: 12.5721px; font-family:
          serif; transform: scaleX(1.00646);" role="presentation"
          dir="ltr">∞</span></span> the optical dielectric constant as
      given in section "Debye relation" on page 12 in [3].</p>
    <p>Or the epsilon_0 as defined as ε1(0), where ε1(ω) is the real
      part and ε2(ω) is the imaginary part of the dielectric function
      like in equation 1 of [4]:<br>
    </p>
    <p>ε(ω) = ε1(ω) + iε2(ω)<br>
    </p>
    <p><span style="left: 293.372px; top: 1142.64px; font-size:
        18.1818px; font-family: sans-serif; transform: scaleX(1.03398);"
        role="presentation" dir="ltr">where it may be that </span>ε1(0)
      and ε1(<span class="texhtml"><span style="left: 369px; top:
          1177.77px; font-size: 12.5721px; font-family: serif;
          transform: scaleX(1.00646);" role="presentation" dir="ltr">∞</span></span>)
      are given by equations 144 and 145 seen in [5].<br>
      <span style="left: 293.372px; top: 1142.64px; font-size:
        18.1818px; font-family: sans-serif; transform: scaleX(1.03398);"
        role="presentation" dir="ltr"></span></p>
    <p>Equation 5 in [4] has<br>
    </p>
    <p>ε1(ω) <span class="ILfuVd NA6bn"><span class="hgKElc">∝
          Integral{</span></span><span class="ILfuVd NA6bn"><span
          class="hgKElc">ε2(ω)}<br>
        </span></span></p>
    <p>where in equation 3 of [4]<br>
    </p>
    <p><span class="ILfuVd NA6bn"><span class="hgKElc">ε2(ω) </span></span><span
        class="ILfuVd NA6bn"><span class="hgKElc">∝ </span></span><span
        style="left: 590.775px; top: 412.364px; font-size: 18.1818px;
        font-family: sans-serif;" role="presentation" dir="ltr">Integral{δ</span><span
        style="left: 599.543px; top: 412.364px; font-size: 18.1818px;
        font-family: sans-serif;" role="presentation" dir="ltr">(energy)}</span><br>
    </p>
    <p>I believe it was article [6] where equations such as 2.26 are
      used by WIEN2k [7,8] that seems to correspond to equation 5 in
      [4].<br>
    </p>
    <p>The energy you are referring to is ћω in equation 2.19 of [6] (or
      equation 3 in [4]) unless I missed something and it is another
      energy that is being talked about.<br>
    </p>
    [1]
<a class="moz-txt-link-freetext" href="https://en.wikipedia.org/wiki/Planck%E2%80%93Einstein_relation#Spectral_forms">https://en.wikipedia.org/wiki/Planck%E2%80%93Einstein_relation#Spectral_forms</a><br>
    [2] <a class="moz-txt-link-freetext" href="http://www.lajpe.org/sep14/03_LAJPE_928_Sagadevan_Suresh.pdf">http://www.lajpe.org/sep14/03_LAJPE_928_Sagadevan_Suresh.pdf</a><br>
    [3]
<a class="moz-txt-link-freetext" href="https://assets.testequity.com/te1/Documents/pdf/keysight/dielectric-measuring-basics-an.pdf">https://assets.testequity.com/te1/Documents/pdf/keysight/dielectric-measuring-basics-an.pdf</a><br>
    [4] <a class="moz-txt-link-freetext" href="https://arxiv.org/abs/1909.11419v1">https://arxiv.org/abs/1909.11419v1</a><br>
    [5]
<a class="moz-txt-link-freetext" href="https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.718.9681&rep=rep1&type=pdf">https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.718.9681&rep=rep1&type=pdf</a><br>
    [6] <a class="moz-txt-link-freetext" href="https://arxiv.org/abs/cond-mat/0402523v1">https://arxiv.org/abs/cond-mat/0402523v1</a><br>
    [7] <a class="moz-txt-link-freetext" href="http://www.wien2k.at/events/ws2006/Optics_Vienna_April_2006.pdf">http://www.wien2k.at/events/ws2006/Optics_Vienna_April_2006.pdf</a><br>
    [8] <a class="moz-txt-link-freetext" href="http://www.wien2k.at/events/ws2008/talks/Ambrosch-Optics.pdf">http://www.wien2k.at/events/ws2008/talks/Ambrosch-Optics.pdf</a><br>
    <br>
    <div class="moz-cite-prefix">On 11/29/2021 11:30 PM, Fecher, Gerhard
      wrote:<br>
    </div>
    <blockquote type="cite"
      cite="mid:dc41b65f8590490d9f6efcb73da532f8@uni-mainz.de">
      <pre class="moz-quote-pre" wrap="">What is the wavelength at zero energy ?

Ciao
Gerhard

DEEP THOUGHT in D. Adams; Hitchhikers Guide to the Galaxy:
"I think the problem, to be quite honest with you,
is that you have never actually known what the question is."

====================================
Dr. Gerhard H. Fecher
Institut of Physics
Johannes Gutenberg - University
55099 Mainz
________________________________________
Von: Wien [<a class="moz-txt-link-abbreviated" href="mailto:wien-bounces@zeus.theochem.tuwien.ac.at">wien-bounces@zeus.theochem.tuwien.ac.at</a>] im Auftrag von Atefe Marasi [<a class="moz-txt-link-abbreviated" href="mailto:13marasi@gmail.com">13marasi@gmail.com</a>]
Gesendet: Montag, 29. November 2021 23:25
An: <a class="moz-txt-link-abbreviated" href="mailto:wien@zeus.theochem.tuwien.ac.at">wien@zeus.theochem.tuwien.ac.at</a>
Betreff: Re: [Wien] How to find the exact value of infinte epsilon?

Dear Xavier

Thank you for your prompt reply.

</pre>
      <blockquote type="cite">
        <pre class="moz-quote-pre" wrap="">Infinite epsilon means that you extrapolate ...
</pre>
      </blockquote>
      <pre class="moz-quote-pre" wrap="">
Do you mean that infinite epsilon (epsilon_oo) is nothing more than epsilon zero (epsilon_0)?

</pre>
      <blockquote type="cite">
        <pre class="moz-quote-pre" wrap="">You must plot the real part...
</pre>
      </blockquote>
      <pre class="moz-quote-pre" wrap="">I have plotted the real part of epsilon in z direction(for BaTiO3), as would be seen from the following link:
<a class="moz-txt-link-freetext" href="https://imgurl.ir/uploads/p793339_infinite_epsilon.jpg">https://imgurl.ir/uploads/p793339_infinite_epsilon.jpg</a>
As expected, the above figure shows that the real part of the epsilon tends to unity at high frequency. From this plot, the epsilon_0 is about 6.5, but I am still not sure that whether infinite epsilon is really equal to epsilon_zero (epsilon_oo =? epsilon_0).

</pre>
      <blockquote type="cite">
        <pre class="moz-quote-pre" wrap="">You must be careful because if you have a band gap and a bad description of the gap value ...
</pre>
      </blockquote>
      <pre class="moz-quote-pre" wrap="">
Thank you for this hint. I will try to obtain a suitable band gap by TB-mBJ functional. However, at this step, I need to find out the difference between epsilon_oo and epsilon_0. In my opinion, which I am not sure about it, epsilon_00 would be evaluated at infinite energy, while epsilon_0 would be evaluated at zero energy, as deduced  from their names.
Thank you for your nice cooperation.

Best Regards
Atefe Marasi
</pre>
    </blockquote>
  </body>
</html>