<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<p>Maybe: Use 3ddens (valence only) and integrate the layers and
sum them up properly.</p>
<p>But it could be too inaccurate due to the lousy grids ....</p>
<p><br>
</p>
<div class="moz-cite-prefix">Am 07.06.2023 um 11:14 schrieb Laurence
Marks:<br>
</div>
<blockquote type="cite"
cite="mid:CANkSMZBeXTS3r76JvFZCw5n09CtCiC1gVkpynBmUS=YU6aSWcA@mail.gmail.com">
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
<div dir="auto">
<div>Dear Gerhard,</div>
<div dir="auto"><br>
</div>
<div dir="auto">Of course why it exists is textbook physics,
e.g. the classic Lang-Kohn paper <a
href="https://doi.org/10.1103/PhysRevB.3.1215"
moz-do-not-send="true" class="moz-txt-link-freetext">https://doi.org/10.1103/PhysRevB.3.1215</a>.
Unfortunately I don't think a 1979 paper will indicate how to
calculate it from Wien2k numbers.</div>
<div dir="auto"><br>
</div>
<div dir="auto">Getting a relative number for the combination of
the MIP and surface dipole is easy -- the difference between
E_f and vacuum for a good surface slab. Separating them is not
so easy. The only thing I can think of is the charge &
dipole for each atom (aim) from which one can backout
something, or (maybe) subtract a dstart density potential from
the final potential.<br>
<br>
<div data-smartmail="gmail_signature" dir="auto">--<br>
Professor Laurence Marks (Laurie)<br>
Department of Materials Science and Engineering,
Northwestern University<br>
<a href="http://www.numis.northwestern.edu"
moz-do-not-send="true">www.numis.northwestern.edu</a><br>
"Research is to see what everybody else has seen, and to
think what nobody else has thought" Albert Szent-Györgyi</div>
<br>
<div class="gmail_quote" dir="auto">
<div dir="ltr" class="gmail_attr">On Wed, Jun 7, 2023, 01:41
Fecher, Gerhard <<a href="mailto:fecher@uni-mainz.de"
moz-do-not-send="true" class="moz-txt-link-freetext">fecher@uni-mainz.de</a>>
wrote:<br>
</div>
<blockquote class="gmail_quote" style="margin:0 0 0
.8ex;border-left:1px #ccc solid;padding-left:1ex">Maybe
you find something useful in:<br>
Springer Tracts in Modern Physics Vol. 85 Solid Surface
Physics (1979)<br>
J. HöIzl F.K.Schulte "Work Function of Metals"<br>
<br>
It should be available online as pdf<br>
<br>
<br>
Ciao<br>
Gerhard<br>
<br>
DEEP THOUGHT in D. Adams; Hitchhikers Guide to the Galaxy:<br>
"I think the problem, to be quite honest with you,<br>
is that you have never actually known what the question
is."<br>
<br>
====================================<br>
Dr. Gerhard H. Fecher<br>
Institut of Physics<br>
Johannes Gutenberg - University<br>
55099 Mainz<br>
________________________________________<br>
Von: Wien [<a
href="mailto:wien-bounces@zeus.theochem.tuwien.ac.at"
target="_blank" rel="noreferrer" moz-do-not-send="true"
class="moz-txt-link-freetext">wien-bounces@zeus.theochem.tuwien.ac.at</a>]
im Auftrag von Laurence Marks [<a
href="mailto:laurence.marks@gmail.com" target="_blank"
rel="noreferrer" moz-do-not-send="true"
class="moz-txt-link-freetext">laurence.marks@gmail.com</a>]<br>
Gesendet: Dienstag, 6. Juni 2023 18:37<br>
An: A Mailing list for WIEN2k users<br>
Betreff: Re: [Wien] Surface dipole of a metal<br>
<br>
Dear Saeid,<br>
<br>
Thanks for the suggestion. One can certainly calculate a
surface dipole for an adsorbate using the method you
suggest, subtracting that for a clean surface from the
adsorbed case.<br>
<br>
However, what I want is the dipole of just the metal, e.g.
the classic Lang-Kohn form <a
href="https://doi.org/10.1103/PhysRevB.3.1215"
rel="noreferrer noreferrer" target="_blank"
moz-do-not-send="true" class="moz-txt-link-freetext">https://doi.org/10.1103/PhysRevB.3.1215</a>.
I want to separate the dipole from the mean-inner
potential component.<br>
<br>
--<br>
Professor Laurence Marks (Laurie)<br>
Department of Materials Science and Engineering,
Northwestern University<br>
<a href="http://www.numis.northwestern.edu"
rel="noreferrer noreferrer" target="_blank"
moz-do-not-send="true">www.numis.northwestern.edu</a><<a
href="http://www.numis.northwestern.edu" rel="noreferrer
noreferrer" target="_blank" moz-do-not-send="true"
class="moz-txt-link-freetext">http://www.numis.northwestern.edu</a>><br>
"Research is to see what everybody else has seen, and to
think what nobody else has thought" Albert Szent-Györgyi<br>
<br>
On Tue, Jun 6, 2023, 11:26 <<a
href="mailto:sjalali@sci.ui.ac.ir" target="_blank"
rel="noreferrer" moz-do-not-send="true"
class="moz-txt-link-freetext">sjalali@sci.ui.ac.ir</a><mailto:<a
href="mailto:sjalali@sci.ui.ac.ir" target="_blank"
rel="noreferrer" moz-do-not-send="true"
class="moz-txt-link-freetext">sjalali@sci.ui.ac.ir</a>>>
wrote:<br>
<br>
Dear Prof. Laurence Marks,<br>
Hi,<br>
Thank you for your inquiry. Calculating the surface dipole
of a metal can be an interesting and challenging task.
While I cannot provide a personal account of testing the
DIPOLE option in AIM, I can suggest an approach that might
be helpful.<br>
<br>
The surface dipole moment, denoted as $\mu$ in Debye, can
be calculated using the Helmholtz equation:<br>
<br>
$\Delta\Phi = \frac{1}{2\pi\Theta}\frac{\mu}{A}$,<br>
<br>
where $\Delta\Phi$ is the work-function change in eV, $A$
is the area per ($1\times1$) surface unit cell in
$\text{\AA}^2$, $\Theta$ represents the adsorbate coverage
in monolayers. The equation expressing the surface dipole
moment is given by Eq. (4) of Ref. [Physical Review B,
73, 165424 (2006)], see also Fig. 2 of this reference,
where $\mu$ and $\Delta \Phi$ are shown as a function of
coverage for O in the fcc-hollow site.<br>
<br>
The work function, as the difference between the
electrostatic potential in the middle of the vacuum and
the Fermi energy of the slab, can be calculated using Eq.
(1) of Ref. [<a
href="http://dx.doi.org/10.1016/j.commatsci.2009.09.027"
rel="noreferrer noreferrer" target="_blank"
moz-do-not-send="true" class="moz-txt-link-freetext">http://dx.doi.org/10.1016/j.commatsci.2009.09.027</a>],
you would also see Fig. 2 of [<a
href="http://dx.doi.org/10.1063/1.3486216"
rel="noreferrer noreferrer" target="_blank"
moz-do-not-send="true" class="moz-txt-link-freetext">http://dx.doi.org/10.1063/1.3486216</a>].<br>
<br>
I hope this suggestion is helpful to you. Should you have
any further questions or require more specific guidance,
please feel free to ask.<br>
Good luck with your research!<br>
Warmest Regards,<br>
Saeid<br>
<br>
<br>
<br>
<br>
Quoting Laurence Marks <<a
href="mailto:laurence.marks@gmail.com" target="_blank"
rel="noreferrer" moz-do-not-send="true"
class="moz-txt-link-freetext">laurence.marks@gmail.com</a><mailto:<a
href="mailto:laurence.marks@gmail.com" target="_blank"
rel="noreferrer" moz-do-not-send="true"
class="moz-txt-link-freetext">laurence.marks@gmail.com</a>>>:<br>
<br>
I wonder if anyone has a good suggestion for calculating
the surface dipole of a metal (e.g. Al). The DIPOLE option
in aim might do it, although I have no idea if that works.
If anyone has tested it please let me know; alternatively,
if you have an inspiration on how to test it against a
calibrant that would be informative.<br>
<br>
I am always hopeful...<br>
<br>
--<br>
Professor Laurence Marks (Laurie)<br>
Department of Materials Science and Engineering<br>
Northwestern University<br>
<a href="http://www.numis.northwestern.edu"
rel="noreferrer noreferrer" target="_blank"
moz-do-not-send="true">www.numis.northwestern.edu</a><<a
href="http://www.numis.northwestern.edu" rel="noreferrer
noreferrer" target="_blank" moz-do-not-send="true"
class="moz-txt-link-freetext">http://www.numis.northwestern.edu</a>><br>
"Research is to see what everybody else has seen, and to
think what nobody else has thought", Albert Szent-Györgyi<br>
<br>
<br>
<br>
_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at"
target="_blank" rel="noreferrer" moz-do-not-send="true"
class="moz-txt-link-freetext">Wien@zeus.theochem.tuwien.ac.at</a><mailto:<a
href="mailto:Wien@zeus.theochem.tuwien.ac.at"
target="_blank" rel="noreferrer" moz-do-not-send="true"
class="moz-txt-link-freetext">Wien@zeus.theochem.tuwien.ac.at</a>><br>
<a
href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien"
rel="noreferrer noreferrer" target="_blank"
moz-do-not-send="true" class="moz-txt-link-freetext">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at: <a
href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html"
rel="noreferrer noreferrer" target="_blank"
moz-do-not-send="true" class="moz-txt-link-freetext">http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</a><br>
_______________________________________________<br>
Wien mailing list<br>
<a href="mailto:Wien@zeus.theochem.tuwien.ac.at"
target="_blank" rel="noreferrer" moz-do-not-send="true"
class="moz-txt-link-freetext">Wien@zeus.theochem.tuwien.ac.at</a><br>
<a
href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien"
rel="noreferrer noreferrer" target="_blank"
moz-do-not-send="true" class="moz-txt-link-freetext">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a><br>
SEARCH the MAILING-LIST at: <a
href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html"
rel="noreferrer noreferrer" target="_blank"
moz-do-not-send="true" class="moz-txt-link-freetext">http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</a><br>
</blockquote>
</div>
</div>
</div>
<br>
<fieldset class="moz-mime-attachment-header"></fieldset>
<pre class="moz-quote-pre" wrap="">_______________________________________________
Wien mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Wien@zeus.theochem.tuwien.ac.at">Wien@zeus.theochem.tuwien.ac.at</a>
<a class="moz-txt-link-freetext" href="http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien">http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien</a>
SEARCH the MAILING-LIST at: <a class="moz-txt-link-freetext" href="http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html">http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html</a>
</pre>
</blockquote>
<pre class="moz-signature" cols="72">--
-----------------------------------------------------------------------
Peter Blaha, Inst. f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-158801165300
Email: <a class="moz-txt-link-abbreviated" href="mailto:peter.blaha@tuwien.ac.at">peter.blaha@tuwien.ac.at</a>
WWW: <a class="moz-txt-link-freetext" href="http://www.imc.tuwien.ac.at">http://www.imc.tuwien.ac.at</a> WIEN2k: <a class="moz-txt-link-freetext" href="http://www.wien2k.at">http://www.wien2k.at</a>
-------------------------------------------------------------------------</pre>
</body>
</html>