<div dir="ltr"><div>Dear Gavin,</div><div><br></div><div>Thank you for your detailed and insightful response. The references you provided, particularly J. Luitz's dissertation, were very helpful.</div><div><br></div><div>Thanks again!</div><div><br></div><div>FG<br></div></div><br><div class="gmail_quote gmail_quote_container"><div dir="ltr" class="gmail_attr">On Sat, Apr 19, 2025 at 4:16 PM Francisco Garcia <<a href="mailto:garcia.ff.000@gmail.com">garcia.ff.000@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr"><div><div>Dear Prof. Blaha,
<p style="line-height:100%;margin-bottom:0in;background:transparent"><br>
</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent">I have two questions
about the valence band emission spectra calculation in the subroutine valencebroadening.f: one question is about the
usage of the parameter W and the other question is on how the
Lorenztian convolution is done.</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent"><br>
</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent">(i) I thought W was
a flag which determines which flavour of the broadening parameter
gamma will be used (see the initial comments in the subroutine
valencebroadening.f below). However, gamma appears to be a multiple
of W in the emission calculation (please see below), which I find very confusing. Any reason(s) why?<br></p>
<p style="line-height:100%;margin-bottom:0in;background:transparent"><br>
</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent">
subroutine
ValenceBroadening(X,Y,yend,w,absorb,istep,wshift,E0,E1,E2,EF,delta,nimax)<br>
!
VALENCE BROADENING : the array y is broadened by
convolution with a Lorentz-function.<br>
! The result
is in array yend. Three different broadening schemes are
available :<br>
! - w=0 : the width of the Lorentz
does not depend on energy<br>
! - w=1 : the width of
the Lorentz varies linearly with energy<br>
! - w=2 :
the width of the Lorentz varies quadratically with energy<br>
!
- w=3 : the width of the Lorentz is given by the scheme of
Moreau et al.</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent">.</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent">.</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent">.</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent">!
EMISSION PART: <br>
if(E0.NE.E2) then<br>
if (X(i1).gt.E0) then<br>
gamma=W*(1-((X(i1)-E0)/(EF-E0)))**2<br>
elseif (X(i1).gt.E1) then<br>
gamma=W<br>
else<br>
gamma=W+W*(1-((X(i1)-E2)/(E1-E2)))**2<br>
endif<br>
else<br>
gamma=W*(1-((X(i1)-E0)/(EF-E0)))**2<br>
endif<br>
endif</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent"><br>
</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent"><br>
</p>
<p style="line-height:100%;margin-bottom:0.2in;background:transparent">(ii) My second
question is how the convolution of the Gaussian-broadened DOS with
the Lorentzian was performed. In the subroutine valencebroadening.f,
the Lorenztian convolution was computed as follows after setting gamma:</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent">
do i2=1,nimax<br>
<br>
yend(i2)=yend(i2)+y(i1)/pi* &<br>
(atan((X(i1)-X(i2)+delta)/gamma) &<br>
-(atan((X(i1)-X(i2)-delta)/gamma)))<br>
<br>
enddo</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent"><br>
</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent">It appears that an
integral in the closed form was used to evaluate the convolution. I
know that the integral of the Lorenztian can be obtained in a closed
form: $$\int \frac{\gamma^2}{\pi(x^2+\gamma^2)} dx =
\frac{\gamma}{\pi}} arctan(x / \gamma)$$. So that seems to be part of
the explanation. But I am highly interested in how the above
discretization was obtained from the convolution.</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent"><br>
</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent">Thank you Sir.</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent"><br>
</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent">FG</p>
<p style="line-height:100%;margin-bottom:0in;background:transparent"><br>
</p>
</div></div></div>
</blockquote></div>