[Wien] Determine primitive cell and positions, CXZ LATTICE 15_B2/b
Peter Blaha
pblaha at theochem.tuwien.ac.at
Fri Mar 20 12:56:02 CET 2015
Of course, for "better" positions it will be easier, but you would still
run into the same problems with the default inputs.
The problem with ghostbands is either connected with
i) a WRONG case.struct file (not in your case) or
ii) ALWAYS connected with the VERY SMALL spheres (for atoms like C,N,O
or in your case P and O) AND the s- (l=0) states of these atoms.
Typically the 3s (2s) state of P or O (or C,N) is lower in energy than
the actual valence states and for a BIG sphere it is therefore necessary
(more accurate) to describe these states with an additional LO and 2
lines in case.in1 like:
0 -1.55 0.002 CONT 1
0 0.30 0.000 CONT 1
For SMALL spheres, however, this leads to ghostbands and the case.scf2
file indicates for you for which atom and l it happens (atom 3 for l=0).
Thus you have to edit case.in1 and either set the "second" energy very
high (O):
0 -1.55 0.002 CONT 1
0 5.30 0.000 CONT 1
or even remove the second line (and change the number of "exceptions" in
the line above from 3 to 2 (P-atom):
0.30 2 0 (GLOBAL E-PARAMETER WITH n OTHER CHOICES,
0 -1.79 0.002 CONT 1
1 0.30 0.000 CONT 1
Then do a "crude":
run (-p) -fc 10
and you see enormous forces on many atoms (in particular H, because
their distance is VERY wrong, leading to these extremely small H and O
radii).
run -p -min -fc 1
optimizes the positions seamlessly. I've stopped this at a very early
stage, but the struct file is attached.
With this struct file I would rerun setrmt again, because the much more
realistic O-H distances allow now for larger H and O spheres making the
calculations MUCH faster. Then continue with the position optimization.
On 03/19/2015 09:36 PM, David Olmsted wrote:
> Peter,
> Thank you for your prompt reply.
>
> I apologize profusely, I failed to explain what I was trying to do.
>
> The cell was generated from an ICSD cif. There is indeed no problem with
> case.struct file, the neighbor distances seem fine. But I am having
> terrible trouble getting this to run because the ghostbands are even harder
> to get rid of than in the other Al-P-O-H structure. I also know that the H
> positions are very different from what GGA is going to give, because I had
> already done a VASP run for the conventional cell.
>
> I am thinking that if I relaxed the structure in VASP first, the positions
> would be better and it might be easier to converge the WIEN2k computation.
> (I am using WIEN2k even though I already have a VASP run because I am trying
> to compute XPS.) But to set up a VASP run, I need to figure out the correct
> primitive cell and the positions that go with them. That is why I am trying
> to convert from the conventional cell description given in case.struct to a
> description in terms of a primitive cell. But I do have one (or both) of
> those two cells wrong with respect to WIEN2k.
>
> Best regards,
> David
>
> --------------------------
> Peter Blaha Thu, 19 Mar 2015 11:30:41 -0700
>
> For low symmetry structures (eg. monoclinic) one can generate several unit
> cells
> which are absolutely equivalent (same volume, same number of atoms, ...)
>
> This happens with sgroup, which transforms your structure such that the
> monoclinic angle is less than 90. In addition the fractional coordinates
> have been changed austomatically. Nevertheless, these two cells will give
> identical neighbor-distances, which you can verify with nn and comparing the
> resulting outputnn files. There is nothing wrong with either your original
> cell
> or the one from sgroup. You can use either one for the calculations.
>
> If you want the conventional cell (which contains of course 2x as many
> atoms),
> you can use x supercell (1x1x1, no shifts/vacuum). It simply changes
> the lattice type to "P", and adds the centered atoms.
> With this struct file, however, you cannot make the calculations unless you
> make these atoms "non-equivalent" and break symmetry, eg. by labeling one
> atom as "Al1".
>
> What you have been trying was to express the lattice vectors/positions in
> carthesian
> coordinates.
> You can check your calculations again using the distances of outputnn and
> compare them to your own calculations.
>
> -----Original Message-----
> From: David Olmsted [mailto:olmsted at berkeley.edu]
> Sent: Thursday, March 19, 2015 9:04 AM
> To: 'wien at zeus.theochem.tuwien.ac.at'
> Subject: Determine primitive cell and positions, CXZ LATTICE 15_B2/b
>
> Dear reader,
> I am trying to determine the primitive cell and positions for a
> case.struct file I am running. But I am not determining the either
> primitive cell or the conventional cell correctly.
>
> I need to either:
> 1. Figure out what I am doing wrong. or
> 2. Find a place in the code where I can print out the positions in terms
> of the primitive cell.
>
> Does anyone know the answer to either question?
>
> This is a base-centered monoclinic system, space group 15.
>
>>From case.struct:
> MODE OF CALC=RELA unit=bohr
>
> 35.704486 13.533274 13.533274 90.000000 90.000000 99.990000
>
> The full case.struct is given below.
>
> sgroup reports 15 (C 2/c) [unique axis c] cell choice 2.
> The struct file output from sgroup is:
> CXZ LATTICE,NONEQUIV.ATOMS: 14 15 C2/c
> MODE OF CALC=RELA unit=bohr
>
> 35.704486 13.533274 13.533274 90.000000 90.000000 80.010000 The case.struct
> file I am using has the 99.99 degree entry as above.
>
> In angstroms, my lattice constants (and angles in degrees) are
> 18.894 7.1615 7.1615 90 90 99.99
>
> The userguide gives (on page 39) the primitive cell as:
> CXZ [a sin(\gamma)/2, a cos(\gamma)/2, -c/2], [0, b, 0], [a
> sin(\gamma)/2, acos(\gamma)/2, c/2]
>
> So I have for a primitive cell (each row is a vector):
> 9.3038 -1.6388 -3.5808
> 0 7.1615 0
> 9.3038 -1.6388 3.5808
>
> With lengths of 10.1029 7.1615 10.1029 and angles 99.34 41.52 99.34.
>
> The positions in case.struct are given in terms of the conventional unit
> cell, and I must convert them to the primitive cell. So I need the
> conventional cell in cartesian coordinates.
>
> The README file in SRC_sgroup talks about base-centered monoclinic being
> restricted to A centered. Page 39 of the userguide shows only
> B-base-centered, which is what I have. The README gives:
>
> The vectors of the conventional cell in cartesian basis
> ( 1 vector is 1 column ... )
>
> a b*Cos[gamma] 0
> 0 b*Sin[gamma] 0 A - centred
> 0 0 c
>
> This is a valid conventional cell in my case, and switching to each row
> being a vector, I have:
> 18.894 0 0
> -1.24235 7.0529 0
> 0 0 7.1615
>
> However the location of the second primitive cell is (0.5, 0, 0.5) in terms
> of the conventional cell. When transformed to primitive cell coordinates it
> must be a lattice vector. But it is not. So one of my cells is wrong. (I
> believe the vector for the second primitive cell is correct because it is
> what is given in the International Tables, page 199, for unique axis c, cell
> choice 2. And it matches to the neighbor positions in case.outputnn.)
>
> Quite possibly the conventional cell is different for B-centered than for
> A-centered, but I do not find it described anywhere.
>
> My thanks for any help.
> David
>
> David Olmsted
> Assistant Research Engineer
> Materials Science and Engineering
> 210 Hearst Memorial Mining Building
> University of California
> Berkeley, CA 94720-1760
>
>
>
> ------- case.struct
> troll_icsd
>
> CXZ LATTICE,NONEQUIV.ATOMS: 14 15_B2/b
>
> MODE OF CALC=RELA unit=bohr
>
> 35.704486 13.533274 13.533274 90.000000 90.000000 99.990000
>
> ATOM -1: X=0.16778000 Y=0.32059000 Z=0.00654000
> MULT= 4 ISPLIT= 8
> -1: X=0.83222000 Y=0.67941000 Z=0.99346000
> -1: X=0.83222000 Y=0.17941000 Z=0.00654000
> -1: X=0.16778000 Y=0.82059000 Z=0.99346000
> Al NPT= 781 R0=0.00010000 RMT= 1.6300 Z: 13.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -2: X=0.07570000
> Y=0.41714000 Z=0.72882000
> MULT= 4 ISPLIT= 8
> -2: X=0.92430000 Y=0.58286000 Z=0.27118000
> -2: X=0.92430000 Y=0.08286000 Z=0.72882000
> -2: X=0.07570000 Y=0.91714000 Z=0.27118000
> Al NPT= 781 R0=0.00010000 RMT= 1.6300 Z: 13.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -3: X=0.00000000
> Y=0.25000000 Z=0.11731000
> MULT= 2 ISPLIT= 8
> -3: X=0.00000000 Y=0.75000000 Z=0.88269000
> P NPT= 781 R0=0.00010000 RMT= 1.3000 Z: 15.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -4: X=0.16844000
> Y=0.08109000 Z=0.63272000
> MULT= 4 ISPLIT= 8
> -4: X=0.83156000 Y=0.91891000 Z=0.36728000
> -4: X=0.83156000 Y=0.41891000 Z=0.63272000
> -4: X=0.16844000 Y=0.58109000 Z=0.36728000
> P NPT= 781 R0=0.00010000 RMT= 1.3000 Z: 15.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -5: X=0.06458000
> Y=0.32611000 Z=0.98827000
> MULT= 4 ISPLIT= 8
> -5: X=0.93542000 Y=0.67389000 Z=0.01173000
> -5: X=0.93542000 Y=0.17389000 Z=0.98827000
> -5: X=0.06458000 Y=0.82611000 Z=0.01173000
> O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -6: X=0.02064000
> Y=0.09579000 Z=0.23728000
> MULT= 4 ISPLIT= 8
> -6: X=0.97936000 Y=0.90421000 Z=0.76272000
> -6: X=0.97936000 Y=0.40421000 Z=0.23728000
> -6: X=0.02064000 Y=0.59579000 Z=0.76272000
> O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -7: X=0.23738000
> Y=0.16861000 Z=0.53512000
> MULT= 4 ISPLIT= 8
> -7: X=0.76262000 Y=0.83139000 Z=0.46488000
> -7: X=0.76262000 Y=0.33139000 Z=0.53512000
> -7: X=0.23738000 Y=0.66861000 Z=0.46488000
> O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -8: X=0.11140000
> Y=0.00803000 Z=0.49156000
> MULT= 4 ISPLIT= 8
> -8: X=0.88860000 Y=0.99197000 Z=0.50844000
> -8: X=0.88860000 Y=0.49197000 Z=0.49156000
> -8: X=0.11140000 Y=0.50803000 Z=0.50844000
> O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -9: X=0.14191000
> Y=0.23708000 Z=0.75449000
> MULT= 4 ISPLIT= 8
> -9: X=0.85809000 Y=0.76292000 Z=0.24551000
> -9: X=0.85809000 Y=0.26292000 Z=0.75449000
> -9: X=0.14191000 Y=0.73708000 Z=0.24551000
> O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -10: X=0.18216000
> Y=0.92446000 Z=0.76484000
> MULT= 4 ISPLIT= 8
> -10: X=0.81784000 Y=0.07554000 Z=0.23516000
> -10: X=0.81784000 Y=0.57554000 Z=0.76484000
> -10: X=0.18216000 Y=0.42446000 Z=0.23516000
> O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -11: X=0.00000000
> Y=0.25000000 Z=0.63572000
> MULT= 2 ISPLIT= 8
> -11: X=0.00000000 Y=0.75000000 Z=0.36428000
> O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -12: X=0.16141000
> Y=0.06966000 Z=0.12100000
> MULT= 4 ISPLIT= 8
> -12: X=0.83859000 Y=0.93034000 Z=0.87900000
> -12: X=0.83859000 Y=0.43034000 Z=0.12100000
> -12: X=0.16141000 Y=0.56966000 Z=0.87900000
> O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -13: X=0.00000000
> Y=0.25000000 Z=0.51600000
> MULT= 2 ISPLIT= 8
> -13: X=0.00000000 Y=0.75000000 Z=0.48400000
> H NPT= 781 R0=0.00010000 RMT= 0.4700 Z: 1.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000 ATOM -14: X=0.19000000
> Y=0.07200000 Z=0.19100000
> MULT= 4 ISPLIT= 8
> -14: X=0.81000000 Y=0.92800000 Z=0.80900000
> -14: X=0.81000000 Y=0.42800000 Z=0.19100000
> -14: X=0.19000000 Y=0.57200000 Z=0.80900000
> H NPT= 781 R0=0.00010000 RMT= 0.4700 Z: 1.0
>
> LOCAL ROT MATRIX: 1.0000000 0.0000000 0.0000000
> 0.0000000 1.0000000 0.0000000
> 0.0000000 0.0000000 1.0000000
> 4 NUMBER OF SYMMETRY OPERATIONS
> -1 0 0 0.00000000
> 0-1 0 0.00000000
> 0 0-1 0.00000000
> 1
> 1 0 0 0.00000000
> 0 1 0 0.00000000
> 0 0 1 0.00000000
> 2
> -1 0 0 0.00000000
> 0-1 0 0.50000000
> 0 0 1 0.00000000
> 3
> 1 0 0 0.00000000
> 0 1 0 0.50000000
> 0 0-1 0.00000000
> 4
>
>
> _______________________________________________
> Wien mailing list
> Wien at zeus.theochem.tuwien.ac.at
> http://zeus.theochem.tuwien.ac.at/mailman/listinfo/wien
> SEARCH the MAILING-LIST at: http://www.mail-archive.com/wien@zeus.theochem.tuwien.ac.at/index.html
>
--
P.Blaha
--------------------------------------------------------------------------
Peter BLAHA, Inst.f. Materials Chemistry, TU Vienna, A-1060 Vienna
Phone: +43-1-58801-165300 FAX: +43-1-58801-165982
Email: blaha at theochem.tuwien.ac.at WIEN2k: http://www.wien2k.at
WWW: http://www.imc.tuwien.ac.at/staff/tc_group_e.php
--------------------------------------------------------------------------
-------------- next part --------------
troll_icsd
CXZ 14 15_B2/b
RELA
35.704486 13.533274 13.533274 90.000000 90.000000 99.990000
ATOM -1: X=0.16658682 Y=0.31764495 Z=0.01427630
MULT= 4 ISPLIT= 8
-1: X=0.83341318 Y=0.68235505 Z=0.98572370
-1: X=0.83341318 Y=0.18235505 Z=0.01427630
-1: X=0.16658682 Y=0.81764495 Z=0.98572370
Al NPT= 781 R0=0.00010000 RMT= 1.6300 Z: 13.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -2: X=0.07592428 Y=0.41527665 Z=0.72963952
MULT= 4 ISPLIT= 8
-2: X=0.92407572 Y=0.58472335 Z=0.27036048
-2: X=0.92407572 Y=0.08472335 Z=0.72963952
-2: X=0.07592428 Y=0.91527665 Z=0.27036048
Al NPT= 781 R0=0.00010000 RMT= 1.6300 Z: 13.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -3: X=0.00000000 Y=0.25000000 Z=0.11773331
MULT= 2 ISPLIT= 8
-3: X=0.00000000 Y=0.75000000 Z=0.88226669
P NPT= 781 R0=0.00010000 RMT= 1.3000 Z: 15.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -4: X=0.16861079 Y=0.07999360 Z=0.63147123
MULT= 4 ISPLIT= 8
-4: X=0.83138921 Y=0.92000640 Z=0.36852877
-4: X=0.83138921 Y=0.42000640 Z=0.63147123
-4: X=0.16861079 Y=0.57999360 Z=0.36852877
P NPT= 781 R0=0.00010000 RMT= 1.3000 Z: 15.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -5: X=0.06469274 Y=0.32617247 Z=0.98782347
MULT= 4 ISPLIT= 8
-5: X=0.93530726 Y=0.67382753 Z=0.01217653
-5: X=0.93530726 Y=0.17382753 Z=0.98782347
-5: X=0.06469274 Y=0.82617247 Z=0.01217653
O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -6: X=0.02066974 Y=0.09524304 Z=0.23821418
MULT= 4 ISPLIT= 8
-6: X=0.97933026 Y=0.90475696 Z=0.76178582
-6: X=0.97933026 Y=0.40475696 Z=0.23821418
-6: X=0.02066974 Y=0.59524304 Z=0.76178582
O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -7: X=0.23713086 Y=0.16970834 Z=0.53111418
MULT= 4 ISPLIT= 8
-7: X=0.76286914 Y=0.83029166 Z=0.46888582
-7: X=0.76286914 Y=0.33029166 Z=0.53111418
-7: X=0.23713086 Y=0.66970834 Z=0.46888582
O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -8: X=0.11075449 Y=0.00770485 Z=0.49052601
MULT= 4 ISPLIT= 8
-8: X=0.88924551 Y=0.99229515 Z=0.50947399
-8: X=0.88924551 Y=0.49229515 Z=0.49052601
-8: X=0.11075449 Y=0.50770485 Z=0.50947399
O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -9: X=0.14239303 Y=0.23809445 Z=0.75554558
MULT= 4 ISPLIT= 8
-9: X=0.85760697 Y=0.76190555 Z=0.24445442
-9: X=0.85760697 Y=0.26190555 Z=0.75554558
-9: X=0.14239303 Y=0.73809445 Z=0.24445442
O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -10: X=0.18128585 Y=0.92463684 Z=0.76352997
MULT= 4 ISPLIT= 8
-10: X=0.81871415 Y=0.07536316 Z=0.23647003
-10: X=0.81871415 Y=0.57536316 Z=0.76352997
-10: X=0.18128585 Y=0.42463684 Z=0.23647003
O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -11: X=0.00000000 Y=0.25000000 Z=0.63563324
MULT= 2 ISPLIT= 8
-11: X=0.00000000 Y=0.75000000 Z=0.36436676
O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -12: X=0.16121218 Y=0.06675188 Z=0.12109534
MULT= 4 ISPLIT= 8
-12: X=0.83878782 Y=0.93324812 Z=0.87890466
-12: X=0.83878782 Y=0.43324812 Z=0.12109534
-12: X=0.16121218 Y=0.56675188 Z=0.87890466
O NPT= 781 R0=0.00010000 RMT= 0.8700 Z: 8.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -13: X=0.00000000 Y=0.25000000 Z=0.49835249
MULT= 2 ISPLIT= 8
-13: X=0.00000000 Y=0.75000000 Z=0.50164751
H NPT= 781 R0=0.00010000 RMT= 0.4700 Z: 1.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
ATOM -14: X=0.20011194 Y=0.08275817 Z=0.21528291
MULT= 4 ISPLIT= 8
-14: X=0.79988806 Y=0.91724183 Z=0.78471709
-14: X=0.79988806 Y=0.41724183 Z=0.21528291
-14: X=0.20011194 Y=0.58275817 Z=0.78471709
H NPT= 781 R0=0.00010000 RMT= 0.4700 Z: 1.00000
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
4 NUMBER OF SYMMETRY OPERATIONS
-1 0 0 0.00000000
0-1 0 0.00000000
0 0-1 0.00000000
1
1 0 0 0.00000000
0 1 0 0.00000000
0 0 1 0.00000000
2
-1 0 0 0.00000000
0-1 0 0.50000000
0 0 1 0.00000000
3
1 0 0 0.00000000
0 1 0 0.50000000
0 0-1 0.00000000
4
Precise positions
0.166586816116074 0.317644952118059 0.014276296187924
0.833413183883926 0.682355047881941 0.985723703812075
0.833413183883926 0.182355047881941 0.014276296187924
0.166586816116074 0.817644952118059 0.985723703812075
0.075924276038223 0.415276647914485 0.729639518713432
0.924075723961777 0.584723352085515 0.270360481286568
0.924075723961777 0.084723352085515 0.729639518713432
0.075924276038223 0.915276647914485 0.270360481286568
0.000000000000000 0.250000000000000 0.117733309092654
0.000000000000000 0.750000000000000 0.882266690907346
0.168610786422903 0.079993601665368 0.631471229458256
0.831389213577097 0.920006398334632 0.368528770541744
0.831389213577097 0.420006398334632 0.631471229458256
0.168610786422903 0.579993601665368 0.368528770541744
0.064692737210348 0.326172465042234 0.987823466262206
0.935307262789652 0.673827534957766 0.012176533737794
0.935307262789652 0.173827534957766 0.987823466262206
0.064692737210348 0.826172465042234 0.012176533737794
0.020669741164627 0.095243035105254 0.238214183051181
0.979330258835373 0.904756964894746 0.761785816948819
0.979330258835373 0.404756964894746 0.238214183051181
0.020669741164627 0.595243035105254 0.761785816948819
0.237130858656035 0.169708340053254 0.531114175468079
0.762869141343965 0.830291659946746 0.468885824531921
0.762869141343965 0.330291659946746 0.531114175468079
0.237130858656035 0.669708340053254 0.468885824531921
0.110754487323395 0.007704852695670 0.490526014397595
0.889245512676605 0.992295147304330 0.509473985602405
0.889245512676605 0.492295147304330 0.490526014397595
0.110754487323395 0.507704852695670 0.509473985602405
0.142393034426350 0.238094450518185 0.755545578569594
0.857606965573650 0.761905549481815 0.244454421430406
0.857606965573650 0.261905549481815 0.755545578569594
0.142393034426350 0.738094450518185 0.244454421430406
0.181285850752396 0.924636835243307 0.763529970025092
0.818714149247604 0.075363164756693 0.236470029974908
0.818714149247604 0.575363164756693 0.763529970025092
0.181285850752396 0.424636835243307 0.236470029974908
0.000000000000000 0.250000000000000 0.635633236552355
0.000000000000000 0.750000000000000 0.364366763447645
0.161212179610648 0.066751879809037 0.121095343476778
0.838787820389352 0.933248120190963 0.878904656523222
0.838787820389352 0.433248120190963 0.121095343476778
0.161212179610648 0.566751879809037 0.878904656523222
0.000000000000000 0.250000000000000 0.498352485367983
0.000000000000000 0.750000000000000 0.501647514632017
0.200111943625552 0.082758167371811 0.215282907128643
0.799888056374448 0.917241832628189 0.784717092871357
0.799888056374448 0.417241832628189 0.215282907128643
0.200111943625552 0.582758167371811 0.784717092871357
More information about the Wien
mailing list